Solveeit Logo

Question

Mathematics Question on Application of derivatives

If y=4x5y=4x-5 is tangent to the curve y2=px3+qy^{2}=px^{3}+q at (2,3)\left(\right.2, \, 3\left.\right) then (p,q)\left(\right.p,q\left.\right) is

A

(2,7)\left(\right.2, \, 7\left.\right)

B

(2,7)\left(\right.-2, \, 7\left.\right)

C

(2,7)\left(\right.-2, \, -7\left.\right)

D

(2,7)\left(\right.2, \, -7\left.\right)

Answer

(2,7)\left(\right.2, \, -7\left.\right)

Explanation

Solution

Curve is y2=px3+qy^{2}=px^{3}+q 2ydydx=3px2\therefore \, \, 2y\frac{d y}{d x}=3px^{2} (dydx)(2,3)=3p.42.3\Rightarrow \, \, \left(\frac{d y}{d x}\right)_{\left(\right. 2,3 \left.\right)}=\frac{3 p . 4}{2.3} 4=2p\Rightarrow \, \, \, 4=2p p=2\Rightarrow \, \, \, p=2 Also, curve is passing through (2,3)\left(\right.2, \, 3\left.\right) 9=8p+q\therefore \, \, 9=8p+q q=7\Rightarrow \, \, \, q=-7 ?(p,q)? \, \, \left(p , \, q\right) is (2,7)\left(2 , \, - 7\right)