Solveeit Logo

Question

Question: If \(y = 4x - 5\)is a tangent to the curve \(y^{2} = px^{3} + q\)at (2,3) then :...

If y=4x5y = 4x - 5is a tangent to the curve y2=px3+qy^{2} = px^{3} + qat (2,3) then :

A

p = 2, q = -7

B

p = -2, q = 7

C

p = -2, q = -7

D

p =2, q = 7

Answer

p = 2, q = -7

Explanation

Solution

Given (2,3) lies on y2=px3+qy^{2} = px^{3} + q we get 9 = 8p + q……..(1)

Again y2=px3+qy^{2} = px^{3} + q

2ydydx=3px22y\frac{dy}{dx} = 3px^{2}

dydx=3px22y\frac{dy}{dx} = \frac{3px^{2}}{2y}

(dydx)(2,3)=12p6=2p\left( \frac{dy}{dx} \right)_{(2,3)} = \frac{12p}{6} = 2p

since y=4x5y = 4x - 5is tangent to y2=px3+qy^{2} = px^{3} + q at (2,3)(2,3) therefore 2p = 4

[ Scope of line y = 4x - 5 is 4]\left\lbrack \because\text{ Scope of line y } = \text{ 4x - 5 is 4} \right\rbrack⇒ p -2. Putting p=2 in equation (1), we get q= -7

Hence p = 2, q = -7.