Solveeit Logo

Question

Mathematics Question on Differential equations

If y3y+2y=0y'' - 3y' + 2y = 0 where y(0)=1y(0) = 1, y(0)=0y'(0) = 0, then the value of yy at x=loge2x \,= log_e \,2 is

A

1

B

-1

C

2

D

0

Answer

0

Explanation

Solution

d2ydx23dydx+2y=0\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0
The corresponding equation is m23m+2=0m^{2}-3 m+2=0
\therefore General solution of given equation
y=Aex+Be2xy=A e^{x}+B e^{2 x}
y=Aex+2Be2xy^{'}=A e^{x}+2 B e^{2 x}
At x=0,y=1x=0, y=1
A+B=1\Rightarrow A+B=1
and x=0,y=0x=0, y^{'}=0
A+2B=0\Rightarrow A+2 B=0
Solving these equation A=2,B=1A=2,\, B=1
y=2exe2x\therefore y=2 e^{x}-e^{2 x}
At x=log2,y=0x=\log 2, \,y=0