Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=3cos(logx)+4sin(logx)y=3cos(logx)+4sin(logx),show that x2y2+xy1+y=0x^2y_2+xy_1+y=0

Answer

It is given that,y=3cos(logx)+4sin(logx)y=3cos(logx)+4sin(logx)
Then,
y1=3.ddx[cos(logx)]+4.ddx[sin(logx)]y_1=3.\frac{d}{dx}[cos(logx)]+4.\frac{d}{dx}[sin(logx)]
=3.[sin(logx).ddx(logx)]+4.[cos(logx).ddx(logx)]=3.[-sin(logx).\frac{d}{dx}(logx)]+4.[cos(logx).\frac{d}{dx}(logx)]
y1=3sin(logx)x+4cos(logx)x=4cos(logx)3sin(logx)x∴y_1=\frac{-3sin(logx)}{x}+\frac{4cos(logx)}{x}=\frac{4cos(logx)-3sin(logx)}{x}
y2=ddx(4cos(logx)3sin(logx)x)∴y_2=\frac{d}{dx}(\frac{4cos(logx)-3sin(logx)}{x})
=x[4cos(logx)3sin(logx)][4cos(logx)3sin(logx)(x)]x2=x\frac{[4cos(logx)-3sin(logx)']-[{4cos(logx)-3sin(logx)}(x)']}{x2}
=x[4cos(logx)3sin(logx)]4cos(logx)3sin(logx).1x2=\frac{x[4{cos(logx)}'-3{sin(logx)}']-{4cos(logx)-3sin(logx)}.1}{x^2}
=x[4sin(logx).(logx)3cos(logx).(logx)]4cos(logx)+3sin(logx)x2=\frac{x[-4sin(logx).(logx)'-3cos(logx).(logx)']-4cos(logx)+3sin(logx)}{x^2}
=x[4sin(logx).1x3cos(logx).1x]4cos(logx)+3sin(logx)x2=\frac{x[-4sin(logx).\frac{1}{x}-3cos(logx).\frac{1}{x}]-4cos(logx)+3sin(logx)}{x^2}
=4sin(logx)3cos(logx)4cos(logx)+3sin(logx)x2=\frac{-4sin(logx)-3cos(logx)-4cos(logx)+3sin(logx)}{x^2}
=sin(logx)7cos(logx)x2=\frac{-sin(logx)-7cos(logx)}{x^2}
x2y2+xy1+y∴x^2y_2+xy_1+y
=x2(sin(logx)7cos(logx))x2+x(4cos(logx)3sin(logx))x+3cos(logx)+4sin(logx)=x^2\frac{(-sin(logx)-7cos(logx))}{x^2}+x\frac{(4cos(logx)-3sin(logx))}{x}+3cos(logx)+4sin(logx)
=sin(logx)7cos(logx)+4cos(logx)3sin(logx)+3cos(logx)+4sin(logx)=-sin(logx)-7cos(logx)+4cos(logx)-3sin(logx)+3cos(logx)+4sin(logx)
=0=0
Hence,proved.