Question
Mathematics Question on Continuity and differentiability
If y=3cos(logx)+4sin(logx),show that x2y2+xy1+y=0
It is given that,y=3cos(logx)+4sin(logx)
Then,
y1=3.dxd[cos(logx)]+4.dxd[sin(logx)]
=3.[−sin(logx).dxd(logx)]+4.[cos(logx).dxd(logx)]
∴y1=x−3sin(logx)+x4cos(logx)=x4cos(logx)−3sin(logx)
∴y2=dxd(x4cos(logx)−3sin(logx))
=xx2[4cos(logx)−3sin(logx)′]−[4cos(logx)−3sin(logx)(x)′]
=x2x[4cos(logx)′−3sin(logx)′]−4cos(logx)−3sin(logx).1
=x2x[−4sin(logx).(logx)′−3cos(logx).(logx)′]−4cos(logx)+3sin(logx)
=x2x[−4sin(logx).x1−3cos(logx).x1]−4cos(logx)+3sin(logx)
=x2−4sin(logx)−3cos(logx)−4cos(logx)+3sin(logx)
=x2−sin(logx)−7cos(logx)
∴x2y2+xy1+y
=x2x2(−sin(logx)−7cos(logx))+xx(4cos(logx)−3sin(logx))+3cos(logx)+4sin(logx)
=−sin(logx)−7cos(logx)+4cos(logx)−3sin(logx)+3cos(logx)+4sin(logx)
=0
Hence,proved.