Solveeit Logo

Question

Question: If \[y = 3{e^{2x}} + 2{e^{3x}}\]. Prove that \[\dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y...

If y=3e2x+2e3xy = 3{e^{2x}} + 2{e^{3x}}. Prove that d2ydx25dydx+6y=0\dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 0

Explanation

Solution

Here, we will prove the given condition. We will find the first derivative of the function, then the second derivative of the function. By substituting the first derivative of the function, the second derivative of the function and the function in the given condition, we will prove the given condition.

Formula Used:
We will use the following derivative formula:
1.ddx(ex)=ex\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}
2.ddx(x)=x\dfrac{d}{{dx}}\left( x \right) = x

Complete step-by-step answer:
We are given that y=3e2x+2e3xy = 3{e^{2x}} + 2{e^{3x}}.
y=3e2x+2e3x\Rightarrow y = 3{e^{2x}} + 2{e^{3x}}………………………………………………………….(1)\left( 1 \right)
Now, we will differentiate equation (1)\left( 1 \right)with respect to xx .
Differentiating equation (1)\left( 1 \right)with respect to xx by using the derivative formula, we get
dydx=3e2x2(1)+2e3x3(1)\Rightarrow \dfrac{{dy}}{{dx}} = 3{e^{2x}} \cdot 2\left( 1 \right) + 2{e^{3x}} \cdot 3\left( 1 \right)
By multiplying the terms, we get
dydx=6e2x+6e3x\Rightarrow \dfrac{{dy}}{{dx}} = 6{e^{2x}} + 6{e^{3x}}
By taking the common factor, we get
dydx=6(e2x+e3x)\Rightarrow \dfrac{{dy}}{{dx}} = 6\left( {{e^{2x}} + {e^{3x}}} \right)………………………………………………………(2)\left( 2 \right)
Now, we will differentiate equation (2)\left( 2 \right)with respect to xx .
Differentiating equation (2)\left( 2 \right)with respect to xx by using the derivative formula, we get
d2ydx2=6(e2x2(1)+e3x3(1))\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6\left( {{e^{2x}} \cdot 2\left( 1 \right) + {e^{3x}} \cdot 3\left( 1 \right)} \right)

By multiplying the terms, we get
d2ydx2=6(2e2x+3e3x)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 6\left( {2{e^{2x}} + 3{e^{3x}}} \right)………………………………………………………………………………(3)\left( 3 \right)
Now, we will prove that d2ydx25dydx+6y=0\dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 0
Now, by substituting the first derivative, the second derivative and the given function, we get
d2ydx25dydx+6y=0\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 0
d2ydx25dydx+6y=6(2e2x+3e3x)5(6(e2x+e3x))+6(3e2x+2e3x)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 6\left( {2{e^{2x}} + 3{e^{3x}}} \right) - 5\left( {6\left( {{e^{2x}} + {e^{3x}}} \right)} \right) + 6\left( {3{e^{2x}} + 2{e^{3x}}} \right)
By multiplying the terms, we get
d2ydx25dydx+6y=6(2e2x+3e3x)5(6e2x+6e3x)+6(3e2x+2e3x)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 6\left( {2{e^{2x}} + 3{e^{3x}}} \right) - 5\left( {6{e^{2x}} + 6{e^{3x}}} \right) + 6\left( {3{e^{2x}} + 2{e^{3x}}} \right)
By multiplying the terms, we get
d2ydx25dydx+6y=12e2x+18e3x30e2x30e3x+18e2x+12e3x\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 12{e^{2x}} + 18{e^{3x}} - 30{e^{2x}} - 30{e^{3x}} + 18{e^{2x}} + 12{e^{3x}}
By adding the terms, we get
d2ydx25dydx+6y=30e2x+30e3x30e2x30e3x\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 30{e^{2x}} + 30{e^{3x}} - 30{e^{2x}} - 30{e^{3x}}
By subtracting the terms, we get
d2ydx25dydx+6y=0\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 0
We have proved that d2ydx25dydx+6y=0\dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 0.
Therefore, if y=3e2x+2e3xy = 3{e^{2x}} + 2{e^{3x}}, then d2ydx25dydx+6y=0\dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 0.

Note: We know that differentiation is defined as a rate of change in function based on one of its variables only. We should remember some rules in differentiation which includes that the derivative of a constant is always zero. The derivative of a combination of functions should be followed in an order that the differentiation of the exponential function at first followed by the differentiation of the function of the algebraic function. The derivative of a constant multiplied by a function is equal to the constant multiplied by the derivative of the function.