Solveeit Logo

Question

Question: If \[y = 3{e^{2x}} + 2{e^{3x}}\] . Prove that \[\dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6...

If y=3e2x+2e3xy = 3{e^{2x}} + 2{e^{3x}} . Prove that d2ydx25dydx+6y=0\dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 0 .

Explanation

Solution

Hint : First we have to find the first and second order derivatives of the given function. Then consider the function d2ydx25dydx+6y\dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y .Substitute the values of the function yy and their derivatives in the consider function and prove that is equal to zero.

Complete step-by-step answer :
A differential equation is the equation which contains dependent variables, independent variables and derivatives of the dependent variables with respect to the independent variables.
Suppose uu and vv are two functions. Then differentiation has the following rules.
1. ddx(u×v)=v×ddx(u)+u×ddx(v)\dfrac{d}{{dx}}\left( {u \times v} \right) = v \times \dfrac{d}{{dx}}\left( u \right) + u \times \dfrac{d}{{dx}}\left( v \right) .
2. ddx(uv)=v×ddx(u)u×ddx(v)v2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v \times \dfrac{d}{{dx}}\left( u \right) - u \times \dfrac{d}{{dx}}\left( v \right)}}{{{v^2}}} .
Given y=3e2x+2e3xy = 3{e^{2x}} + 2{e^{3x}} ----(1)
Differentiating with respect to xx both sides of the equation (1), we get
dydx=6e2x+6e3x\dfrac{{dy}}{{dx}} = 6{e^{2x}} + 6{e^{3x}} -------(2)
Differentiating with respect to xx both sides of the equation (2), we get
d2ydx2=12e2x+18e3x\dfrac{{{d^2}y}}{{d{x^2}}} = 12{e^{2x}} + 18{e^{3x}} ------(3)
Consider d2ydx25dydx+6y\dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y
Substitute the values of yy , dydx\dfrac{{dy}}{{dx}} , and d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} from the equations (1),(2), and (3) in the above consider expression, we get
d2ydx25dydx+6y=12e2x+18e3x5(6e2x+6e3x)+6(3e2x+2e3x)\dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 12{e^{2x}} + 18{e^{3x}} - 5\left( {6{e^{2x}} + 6{e^{3x}}} \right) + 6\left( {3{e^{2x}} + 2{e^{3x}}} \right)
Simplifying the RHS of the above equation, we get
d2ydx25dydx+6y=12e2x+18e3x30e2x+30e3x+18e2x+12e3x=0\dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 12{e^{2x}} + 18{e^{3x}} - 30{e^{2x}} + 30{e^{3x}} + 18{e^{2x}} + 12{e^{3x}} = 0
Hence, we prove d2ydx25dydx+6y=0\dfrac{{{d^2}y}}{{d{x^2}}} - 5\dfrac{{dy}}{{dx}} + 6y = 0 when y=3e2x+2e3xy = 3{e^{2x}} + 2{e^{3x}} .

Note : Note that the derivative of the constant times the function is equal to constant times the derivative of the given function. Since differential equations are classified into two types, Ordinary differential equations where dependent variables depend on only one independent variable and Partial differential equations where dependent variables depend on two or more independent variables.