Solveeit Logo

Question

Mathematics Question on Differentiability

If y=2xn+1+3xny = 2x^{n+1} + \frac {3}{x^n} ,then x2d2ydx2x^2 \frac{d^2y}{dx^2} is

A

6n(n+1)y

B

n(n+1)y

C

xdydx+yx \frac{dy}{dx}+y

D

yy

Answer

n(n+1)y

Explanation

Solution

y=(2x)(n+1)+(3x)(n)y=(2 x)^{(n+1)}+(3 x)^{(-n)}
dy/dx=2(n+1)xn(3nx)(n1)\Rightarrow d y / d x=2(n+1) x^{n}-(3 n x)^{(-n-1)}
(d2y)/(dx2)=2n(n+1)x(n1)+3n(n+1)x(n2)\Rightarrow\left(d^{2} y\right) /\left(d x^{2}\right)=2 n(n+1) x^{(n-1)}+3 n(n+1) x^{(-n-2)}
x2(d2y)/(dx2)=n(n+1)[(2x)(n+1)+3/xn]\Rightarrow x^{2}\left(d^{2} y\right) /\left(d x^{2}\right)=n(n+1)\left[(2 x)^{(n+1)}+3 / x^{n}\right]
x2(d2y)/(dx2)=n(n+1)y\Rightarrow x^{2}\left(d^{2} y\right) /\left(d x^{2}\right)=n(n+1) y