Solveeit Logo

Question

Question: If y = 2x +cot<sup>–1</sup> x + log (\(\sqrt{1 + x^{2}}\)– x), then y –...

If y = 2x +cot–1 x + log (1+x2\sqrt{1 + x^{2}}– x), then y –

A

Decreases on (–∞, ∞)

B

Decreases on [0, ∞)

C

Neither decreases nor increases on [0, ∞)

D

Increases on (–∞, ∞)

Answer

Increases on (–∞, ∞)

Explanation

Solution

y′(x) = 2 – 11+x2\frac{1}{1 + x^{2}} + 11+x2x\frac{1}{\sqrt{1 + x^{2}} - x}(1+x2x)\left( \sqrt{1 + x^{2}} - x \right)

= 2 – 11+x2\frac{1}{1 + x^{2}} + 11+x2x\frac{1}{\sqrt{1 + x^{2}} - x}×(x1+x21)\left( \frac{x}{\sqrt{1 + x^{2}}} - 1 \right)

= 2 – 11+x2\frac{1}{1 + x^{2}}11+x2\frac{1}{\sqrt{1 + x^{2}}} ≥ 0

Since 1/(1 + x2) and 1/1+x2\sqrt{1 + x^{2}} are less than or equal to 1 for all x. So ƒ(x) increases on (–∞, ∞).