Solveeit Logo

Question

Question: If \(y = 2x + \cot^{- 1}x + \log\left( \sqrt{1 + x^{2}} - x \right)\), then y...

If y=2x+cot1x+log(1+x2x)y = 2x + \cot^{- 1}x + \log\left( \sqrt{1 + x^{2}} - x \right), then y

A

Decreases on (,)( - \infty,\infty)

B

Decreases on [0,)\lbrack 0,\infty)

C

Neither decreases nor increases on [0,0)\lbrack 0,0)

D

Increases on (,)( - \infty,\infty)

Answer

Increases on (,)( - \infty,\infty)

Explanation

Solution

y(x)=211+x2+11+x2xddx(1+x2x)y'(x) = 2 - \frac{1}{1 + x^{2}} + \frac{1}{\sqrt{1 + x^{2}} - x}\frac{d}{dx}\left( \sqrt{1 + x^{2}} - x \right)

=211+x2+11+x2x x (x1+x21)2 - \frac{1}{1 + x^{2}} + \frac{1}{\sqrt{1 + x^{2}} - x}\text{ x }\left( \frac{x}{\sqrt{1 + x^{2}}} - 1 \right)

=211+x211+x2=(1+x21+x2)+x21+x202 - \frac{1}{1 + x^{2}} - \frac{1}{\sqrt{1 + x^{2}}} = \frac{\left( 1 + x^{2} - \sqrt{1 + x^{2}} \right) + x^{2}}{\sqrt{1 + x^{2}}} \geq 0

for all x. so f(x)f(x) increases on (,)( - \infty,\infty)