Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=2x32x1y=2^{x}\cdot3^{2x-1}, then dydx\frac{dy}{dx} is equal to

A

(log2)(log3)(log \,2)(log\, 3)

B

(log18)(log \,18)

C

(log182)y2(log \,18^2)y^2

D

y(log18)y(log \,18)

Answer

y(log18)y(log \,18)

Explanation

Solution

Given, y=2x32x1y = 2^x \cdot 3^{2x-1} Differentiating ww.rr.tt. xx, we get dydx=2xddx(32x1)+(32x1)+(32x1)ddx(2x)(i)\frac{dy}{dx}=2^{x}\cdot\frac{d}{dx}\left(3^{2x-1}\right)+\left(3^{2x-1}\right)+\left(3^{2x-1}\right) \frac{d}{dx}\left(2^{x}\right)\,\ldots\left(i\right) Let 32x1=u3^{2x-1}=u logu=(2x1)log3\Rightarrow logu=\left(2x-1\right)log3 dudx=32x1×2log3\Rightarrow \frac{du}{dx}=3^{2x-1}\times2\cdot log3 \therefore From (i)(i), we have dydx=2x32x1(2)log3+2x32x1log2\frac{dy}{dx}=2^{x}\cdot3^{2x-1}\left(2\right)log\,3+2^{x}\cdot3^{2x-1}\,log\,2 dydx=2x32x1[2log3+log2]\Rightarrow \frac{dy}{dx}=2^{x}\cdot3^{2x-1}\left[2\,log\,3+log\,2\right] dydx=ylog18\Rightarrow \frac{dy}{dx}=y\,log\,18