Solveeit Logo

Question

Mathematics Question on Differentiability

If y2=P(x)y^2 = P (x) is a polynomial of degree 3, then 2ddx(y3d2ydx2)2 \frac{d}{dx} \bigg(y^3 \frac{d^2 \, y}{ dx^2}\bigg) equals

A

P "' (x) + P' (x)

B

P " (x) - P'" (x)

C

P (x) P'" (x)

D

a constant

Answer

P (x) P'" (x)

Explanation

Solution

Since, y2y^2 = P (x)
On differentiating both sides, we get
\hspace16mm 2yy12 yy_1 = P ' (x) ,
Again, differentiating, we get
2yy2+2y12=2yy_2 + 2y_1^2 = P " (x)
2y3y2+2y2y12=y2\Rightarrow 2y^3 \, y_2 + 2y^2 y_1^2 = y^2 P " ( x)
2y3y2=y2P"(x)2(yy1)2\Rightarrow 2y^3 y_2 = y^2 \, P "' (x) - 2 (y y_1)^2
2y3y2=P(x).P"(x)P(x)22\Rightarrow 2y^3 y_2 = P (x) . P " (x) - \frac{ \\{ P ' (x) \\}^2 }{ 2}
Again, differentiating, we get
2 ddx(y3y2)=P(x).P"(x)+P(x).P"(x)2P(x).P"(x)2 \frac{d}{dx} (y^3 y_2) = P ' (x) . P " (x) + P (x). P "' (x) - \frac{ 2 P ' (x) . P " (x)}{2}
2ddx(y3y2)=P(x).P"(x)\Rightarrow 2 \frac{d}{dx} (y^3 \, y_2) = P (x). P "' (x)
2ddx(y3.d2ydx2)=P(x).P""(x)\Rightarrow 2 \frac{d}{dx} \bigg( y^3 . \frac{ d^2 y }{ dx^2} \bigg) = P (x). P "" (x)