Solveeit Logo

Question

Mathematics Question on limits and derivatives

If y2=p(x),y^2 = p(x), a polynomial of degree 3, then 2ddx(y3d2ydx2)2 \frac{d}{dx} \left(y^{3} \frac{d^{2}y}{dx^{2}}\right) is equal to

A

p"'(x) + p' (x)

B

p"(x) p'" (x)

C

p(x) p"' (x)

D

a constant

Answer

p(x) p"' (x)

Explanation

Solution

y2=p(x)2ydydx=p(x)y^{2} =p\left(x\right) \Rightarrow 2y \frac{dy}{dx} =p'\left(x\right) 2yd2ydx2+2(dydx)2=p"(x)\Rightarrow 2y \frac{d^{2}y}{dx^{2}} +2 \left(\frac{dy}{dx}\right)^{2} =p"\left(x\right) 2yd3ydx3+2dydx.d2ydx2+4dydx.d2ydx2=p(x) \therefore 2y \frac{d^{3}y}{dx^{3}} + 2 \frac{dy}{dx}. \frac{d^{2}y}{dx^{2}}+ 4 \frac{dy}{dx}. \frac{d^{2}y}{dx^{2}} = p''' \left(x\right) 2yy3+6y1y2=p(x)\Rightarrow 2yy_{3} + 6y_{1}y_{2} = p'''\left(x\right) Now 2ddx(y3y2)=2[y3y3+3y2y1y2]2 \frac{d}{dx} \left(y^{3}y_{2}\right) = 2 \left[y^{3}y_{3} + 3y^{2}y_{1}y_{2}\right] =y2[2yy3+6y1y2]=y2p(x)=p(x)p(x)=y^{2}\left[2yy_{3} + 6y_{1}y_{2}\right] = y^{2} p'''\left(x\right) = p\left(x\right)p'''\left(x\right)