Question
Mathematics Question on limits and derivatives
If y2=p(x), a polynomial of degree 3, then 2dxd(y3dx2d2y) is equal to
A
p"'(x) + p' (x)
B
p"(x) p'" (x)
C
p(x) p"' (x)
D
a constant
Answer
p(x) p"' (x)
Explanation
Solution
y2=p(x)⇒2ydxdy=p′(x) ⇒2ydx2d2y+2(dxdy)2=p"(x) ∴2ydx3d3y+2dxdy.dx2d2y+4dxdy.dx2d2y=p′′′(x) ⇒2yy3+6y1y2=p′′′(x) Now 2dxd(y3y2)=2[y3y3+3y2y1y2] =y2[2yy3+6y1y2]=y2p′′′(x)=p(x)p′′′(x)