Question
Question: If y = (1 + x)(1 + x<sup>2</sup>)(1 + x<sup>4</sup>)....(1 + \(x^{2^{n}}\)) then \(\frac{dy}{dx}\) a...
If y = (1 + x)(1 + x2)(1 + x4)....(1 + x2n) then dxdy at x = 0 is –
A
1
B
0
C
–1
D
None of these
Answer
1
Explanation
Solution
y = (1 + x)(1 + x2)(1 + x4)....(1 + x2n)
Multiplying numerator and denominator by (1–x)
⇒ y = (1−x)(1−x)(1+x)(1+x2)....(1+x2n)
⇒ y = ((1−x)1−x2n+1)
∴ dxdy = (1−x)2(1−x).{−2n+1.x2n+1−1}−(1−x2n+1)(−1)
So dxdyx=0 = 12−2n+1.0.1+1−0 = 1