Solveeit Logo

Question

Question: If y = (1 + x)(1 + x<sup>2</sup>)(1 + x<sup>4</sup>)....(1 + \(x^{2^{n}}\)) then \(\frac{dy}{dx}\) a...

If y = (1 + x)(1 + x2)(1 + x4)....(1 + x2nx^{2^{n}}) then dydx\frac{dy}{dx} at x = 0 is –

A

1

B

0

C

–1

D

None of these

Answer

1

Explanation

Solution

y = (1 + x)(1 + x2)(1 + x4)....(1 + x2nx^{2^{n}})

Multiplying numerator and denominator by (1–x)

⇒ y = (1x)(1+x)(1+x2)....(1+x2n)(1x)\frac{(1 - x)(1 + x)(1 + x^{2})....(1 + x^{2^{n}})}{(1 - x)}

⇒ y = (1x2n+1(1x))\left( \frac{1 - x^{2^{n + 1}}}{(1 - x)} \right)

∴ dydx\frac{dy}{dx} = (1x).{2n+1.x2n+11}(1x2n+1)(1)(1x)2\frac{(1 - x).\{ - 2^{n + 1}.x^{2^{n + 1} - 1}\} - (1 - x^{2^{n + 1}})( - 1)}{(1 - x)^{2}}

So  dydxx=0\left. \ \frac{dy}{dx} \right|_{x = 0} = 2n+1.0.1+1012\frac{- 2^{n + 1}.0.1 + 1 - 0}{1^{2}} = 1