Solveeit Logo

Question

Question: If \(y = (1 + x)(1 + x^{2})(1 + x^{4}).......(1 + x^{2^{n}})\) then \(\frac{dy}{dx}\) at \(x = 0\) i...

If y=(1+x)(1+x2)(1+x4).......(1+x2n)y = (1 + x)(1 + x^{2})(1 + x^{4}).......(1 + x^{2^{n}}) then dydx\frac{dy}{dx} at x=0x = 0 is

A

1

B

– 1

C

0

D

None of these

Answer

1

Explanation

Solution

y=(1x)(1+x)(1+x2).....(1+x2n)1x=1x2n+11xy = \frac{(1 - x)(1 + x)(1 + x^{2}).....(1 + x^{2^{n}})}{1 - x} = \frac{1 - x^{2^{n + 1}}}{1 - x}

\therefore dydx=2n+1.x2n+11(1x)+1x2n+1(1x)2\frac{dy}{dx} = \frac{- 2^{n + 1}.x^{2^{n + 1} - 1}(1 - x) + 1 - x^{2^{n + 1}}}{(1 - x)^{2}}

\therefore At x=0x = 0, dydx=2n+10.1+1012=1\frac{dy}{dx} = \frac{- 2^{n + 1}0.1 + 1 - 0}{1^{2}} = 1.