Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If y=(1+x2)tan1(x)xy = (1+x^2) \tan^{-1}(x) - x. Then dydx\frac{dy}{dx} is

A

2xtan1(x)2x \tan^{-1}(x)

B

x2tan1(x)x^2 \tan^{-1}(x)

C

tan1(x)x\frac{\tan^{-1}(x)}{x}

D

xtan1(x)x\tan^{-1}(x)

Answer

2xtan1(x)2x \tan^{-1}(x)

Explanation

Solution

The derivative of (1+x2)tan1(x)(1 + x^2) \tan^{-1}(x) with respect to x can be found using the product rule and the chain rule

ddx[(1+x2)tan1(x)]=ddx(1+x2)tan1(x)+(1+x2)ddxtan1(x)\frac{d}{dx} \left[ (1 + x^2) \tan^{-1}(x) \right] = \frac{d}{dx} (1 + x^2) \tan^{-1}(x) + (1 + x^2) \frac{d}{dx} \tan^{-1}(x)
The derivative of (1+x2)(1 + x^2) with respect to x is 2x, and the derivative of tan1(x)\tan^{-1}(x) with respect to x is 11+x2\frac{1}{1 + x^2}
Therefore, we have:
=(2x)tan1(x)+1+x21+x2=(2x) \tan^{-1}(x) + \frac{1 + x^2}{1 + x^2} [Using the chain rule]
=(2x)tan1(x)+1=(2x) \tan^{-1}(x) + 1
Now, let's differentiate the term -x:
ddx(x)=1\frac{d}{dx}(-x) = -1
Finally, we can add the derivatives of both terms:
dydx=2xtan1(x)+11\frac{dy}{dx} = 2x \tan^{-1}(x) + 1 - 1
Simplifying, we get:
dydx=2xtan1(x)\frac{dy}{dx} = 2x \tan^{-1}(x)
Therefore, the correct option is (A) 2xtan1(x)2x \tan^{-1}(x)