Question
Question: If y = (1 + x) (1 + x<sup>2</sup>) (1 + x<sup>4</sup>)…(1 + \(x^{2^{n}}\)) then \(\frac{dy}{dx}\) at...
If y = (1 + x) (1 + x2) (1 + x4)…(1 + x2n) then dxdy at x = 0 is –
A
1
B
1
C
0
D
None of these
Answer
1
Explanation
Solution
y = 1−x(1−x)(1+x)(1+x2)...(1+x2n) = 1−x1−x2n+1
∴ dxdy = (1−x)2–2n+1.x2n+1−1.(1−x)+1−x2n+1;
∴ at x = 0, dxdy = 12–2n+1.0.1+1−0 = 1.