Question
Question: If y = (1 + x) (1 + x<sup>2</sup>) (1 + x<sup>4</sup>) …. (1 + x<sup>2n</sup>) then \(\frac{dy}{dx}\...
If y = (1 + x) (1 + x2) (1 + x4) …. (1 + x2n) then dxdy at x = 0 is
A
1
B
– 1
C
0
D
None
Answer
1
Explanation
Solution
y = (1 + x) (1 + x2) (1 + x4) …….(1 + x2n)
Ž y =(1−x)(1−x)(1+x)(1+x2)......(1+x2n)=1−x1−x2n+1
dxdy=(1−x)2(1−x){0−(2n+1).x2n−(1−x)2n(0−1)}⇒dxdy(x=0)=1