Solveeit Logo

Question

Question: If y = (1 + x) (1 + x<sup>2</sup>) (1 + x<sup>4</sup>) …….. \((1 + x^{2^{n}})\) then \(\frac{dy}{dx}...

If y = (1 + x) (1 + x2) (1 + x4) …….. (1+x2n)(1 + x^{2^{n}}) then dydx\frac{dy}{dx}

at x = 0 is

A

1

B

– 1

C

0

D

None

Answer

1

Explanation

Solution

y=(1+x)(1+x2)(1+x4)..........(1+x2n)y = (1 + x)(1 + x^{2})(1 + x^{4})..........(1 + x^{2^{n}})

= (1x)(1+x)(1+x2)..........(1+x2n)1x\frac{(1 - x)(1 + x)(1 + x^{2})..........(1 + x^{2^{n}})}{1 - x}

= (1x2)(1+x2)..........(1+x2n)1x\frac{(1 - x^{2})(1 + x^{2})..........(1 + x^{2^{n}})}{1 - x}

= 1x2n+11x\frac{1 - x^{2^{n + 1}}}{1 - x}

dydx=(1x)(2n+1x2n+11)+(1x2n+1)(1x)2\frac{dy}{dx} = \frac{(1 - x)( - 2^{n + 1} \cdot x^{2^{n + 1} - 1}) + (1 - x^{2^{n + 1}})}{(1 - x)^{2}}

(dydx)(x=0)=11=1\left( \frac{dy}{dx} \right)_{(x = 0)} = \frac{1}{1} = 1