Solveeit Logo

Question

Question: If \(y = (1 + \tan A)(1 - \tan B)\) where \(A - B = \frac{\pi}{4}\), then \((y + 1)^{y + 1}\) is equ...

If y=(1+tanA)(1tanB)y = (1 + \tan A)(1 - \tan B) where AB=π4A - B = \frac{\pi}{4}, then (y+1)y+1(y + 1)^{y + 1} is equal to

A

9

B

4

C

27

D

81

Answer

27

Explanation

Solution

AB=π4tan(AB)=tanπ4tanAtanB1+tanAtanB=1A - B = \frac{\pi}{4} \Rightarrow \tan(A - B) = \tan\frac{\pi}{4} \Rightarrow \frac{\tan A - \tan B}{1 + \tan A\tan B} = 1

tanAtanBtanAtanB=1\Rightarrow \tan A - \tan B - \tan A\tan B = 1

tanAtanBtanAtanB+1=2\Rightarrow \tan A - \tan B - \tan A\tan B + 1 = 2

(1+tanA)(1tanB)=2\Rightarrow (1 + \tan A)(1 - \tan B) = 2y=2y = 2

Hence, (y+1)y+1=(2+1)2+1=(3)3=27(y + 1)^{y + 1} = (2 + 1)^{2 + 1} = (3)^{3} = 27.

Trick : Put suitable A and B as AB=π4A - B = \frac{\pi}{4}

i.e.,A=π4,B=0A = \frac{\pi}{4},B = 0 (1+tanπ4)(1tan0o)=2(1)=2\therefore\left( 1 + \tan\frac{\pi}{4} \right)(1 - \tan 0^{o}) = 2(1) = 2.