Question
Question: If \(y = (1 + \tan A)(1 - \tan B)\) where \(A - B = \frac{\pi}{4}\), then \((y + 1)^{y + 1}\) is equ...
If y=(1+tanA)(1−tanB) where A−B=4π, then (y+1)y+1 is equal to
A
9
B
4
C
27
D
81
Answer
27
Explanation
Solution
A−B=4π⇒tan(A−B)=tan4π⇒1+tanAtanBtanA−tanB=1
⇒tanA−tanB−tanAtanB=1
⇒tanA−tanB−tanAtanB+1=2
⇒(1+tanA)(1−tanB)=2 ⇒ y=2
Hence, (y+1)y+1=(2+1)2+1=(3)3=27.
Trick : Put suitable A and B as A−B=4π
i.e.,A=4π,B=0 ∴(1+tan4π)(1−tan0o)=2(1)=2.