Question
Question: If \(y = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + ......\infty\), then \(x =\)...
If y=1+1!x+2!x2+3!x3+......∞, then x=
A
logey
B
logey1
C
ey
D
e−y!
Answer
logey
Explanation
Solution
3e.
If y=1+1!x+2!x2+3!x3+......∞, then x=
logey
logey1
ey
e−y!
logey
3e.