Solveeit Logo

Question

Question: If \(y = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + ......\infty\), then \(x =\)...

If y=1+x1!+x22!+x33!+......y = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + ......\infty, then x=x =

A

logey\log_{e}y

B

loge1y\log_{e}\frac{1}{y}

C

eye^{y}

D

eye^{- y}!

Answer

logey\log_{e}y

Explanation

Solution

3e3e.