Question
Question: If \((x,y,z) \neq (0,0,0)\) and \((\mathbf{i} + \mathbf{j} + 3\mathbf{k})x + (3\mathbf{i} - 3\mathbf...
If (x,y,z)=(0,0,0) and (i+j+3k)x+(3i−3j+k)y
+(−4i+5j)z=λ(xi+yj+zk), then the value of λ will be
A
– 2, 0
B
0, – 2
C
– 1, 0
D
0, – 1
Answer
0, – 1
Explanation
Solution
Comparing the coefficients of i,j and k, the corresponding equations are
x+3y−4z=λx or (1−λ)x+3y−4z=0 ......(i)
x−(λ+3)y+5z=0 ......(ii)
3x+y−λz=0 .....(iii)
These equations (i), (ii) and (iii) have a non-trivial solution,
if (1−λ)133−(λ+3)1−45−λ=0⇒λ=0,−1.