Solveeit Logo

Question

Question: If \((x,y,z) \neq (0,0,0)\) and \((\mathbf{i} + \mathbf{j} + 3\mathbf{k})x + (3\mathbf{i} - 3\mathbf...

If (x,y,z)(0,0,0)(x,y,z) \neq (0,0,0) and (i+j+3k)x+(3i3j+k)y(\mathbf{i} + \mathbf{j} + 3\mathbf{k})x + (3\mathbf{i} - 3\mathbf{j} + \mathbf{k})y

+(4i+5j)z=λ(xi+yj+zk),+ ( - 4\mathbf{i} + 5\mathbf{j})z = \lambda(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}), then the value of λ will be

A

– 2, 0

B

0, – 2

C

– 1, 0

D

0, – 1

Answer

0, – 1

Explanation

Solution

Comparing the coefficients of i,j\mathbf{i},\mathbf{j} and k,\mathbf{k}, the corresponding equations are

x+3y4z=λxx + 3y - 4z = \lambda x or (1λ)x+3y4z=0(1 - \lambda)x + 3y - 4z = 0 ......(i)

x(λ+3)y+5z=0x - (\lambda + 3)y + 5z = 0 ......(ii)

3x+yλz=03x + y - \lambda z = 0 .....(iii)

These equations (i), (ii) and (iii) have a non-trivial solution,

if (1λ)341(λ+3)531λ=0λ=0,1.\left| \begin{matrix} (1 - \lambda) & 3 & - 4 \\ 1 & - (\lambda + 3) & 5 \\ 3 & 1 & - \lambda \end{matrix} \right| = 0 \Rightarrow \lambda = 0, - 1.