Solveeit Logo

Question

Question: If x,y,z are integers in A.P., lying between 1 and 9, and x 51, y 41 and z 31 are three –digits num...

If x,y,z are integers in A.P., lying between 1 and 9, and x 51,

y 41 and z 31 are three –digits numbers then the value of

543x51y41z31xyz\left| \begin{matrix} 5 & 4 & 3 \\ x51 & y41 & z31 \\ x & y & z \end{matrix} \right| is

A

x+y+z

B

x-y+z

C

0

D

x+2y+z

Answer

0

Explanation

Solution

Let ∆=543x51y41z31xyz\left| \begin{matrix} 5 & 4 & 3 \\ x51 & y41 & z31 \\ x & y & z \end{matrix} \right|

=11000504030100x+50+1100y+40+1100z+30+1100x100y100z= \frac{1}{1000}\left| \begin{matrix} 50 & 40 & 30 \\ 100x + 50 + 1 & 100y + 40 + 1 & 100z + 30 + 1 \\ 100x & 100y & 100z \end{matrix} \right|Applying R2R2(R1+R3)R_{2} \rightarrow R_{2} - \left( R_{1} + R_{3} \right) & then

C2C2C1C3C3C2C_{2} \rightarrow C_{2} - C_{1}C_{3} \rightarrow C_{3} - C_{2}

= 11000{1000(zy)+1000(yx)}- \frac{1}{1000}\left\{ - 1000(z - y) + 1000(y - x) \right\}

= (z+x2y)(z + x - 2y) = 0 (x,y,zareinA.P.)(\therefore x,y,zareinA.P.)