Solveeit Logo

Question

Question: If \(xy + {y^2} = \tan x + y\) , then \(\dfrac{{dy}}{{dx}}\) is equal to A) \(\dfrac{{{{\sec }^2}x...

If xy+y2=tanx+yxy + {y^2} = \tan x + y , then dydx\dfrac{{dy}}{{dx}} is equal to
A) sec2xy(x+2y1)\dfrac{{{{\sec }^2}x - y}}{{\left( {x + 2y - 1} \right)}}
B) cos2x+y(x+2y1)\dfrac{{{{\cos }^2}x + y}}{{\left( {x + 2y - 1} \right)}}
C) sec2xy(2x+y1)\dfrac{{{{\sec }^2}x - y}}{{\left( {2x + y - 1} \right)}}
D) cos2x+y(2x+2y1)\dfrac{{{{\cos }^2}x + y}}{{\left( {2x + 2y - 1} \right)}}

Explanation

Solution

It is given in the question that xy+y2=tanx+yxy + {y^2} = \tan x + y .
So, we will find dydx\dfrac{{dy}}{{dx}} .
First, we will find the derivative of each term, then after we will make dydx\dfrac{{dy}}{{dx}} as a subject.
Finally, after solving the equation we will get the answer.

Complete step by step solution:
It is given in the question that xy+y2=tanx+yxy + {y^2} = \tan x + y .
So, we have to find dydx\dfrac{{dy}}{{dx}} .
Since, the given equation is xy+y2=tanx+yxy + {y^2} = \tan x + y
Now, differentiate the above equation with respect to x, we get,
ddx(xy)+ddx(y2)=ddx(tanx)+dydx\dfrac{d}{{dx}}\left( {xy} \right) + \dfrac{d}{{dx}}\left( {{y^2}} \right) = \dfrac{d}{{dx}}\left( {\tan x} \right) + \dfrac{{dy}}{{dx}}
Applying the formula of derivative of product of two functions i.e. ddx(uv)=udvdx+vdudx\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} on the function xy.
x.dydx+y.1+2ydydx=sec2x+dydx\Rightarrow x.\dfrac{{dy}}{{dx}} + y.1 + 2y\dfrac{{dy}}{{dx}} = {\sec ^2}x + \dfrac{{dy}}{{dx}}
Now, making dydx\dfrac{{dy}}{{dx}} as subject
dydx(x+2y1)=sec2xy\Rightarrow \dfrac{{dy}}{{dx}}\left( {x + 2y - 1} \right) = {\sec ^2}x - y
dydx=sec2xy(x+2y1)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{{\sec }^2}x - y}}{{\left( {x + 2y - 1} \right)}}

Note:
Some formula of derivative:

  1. ddy(sinx)=cosx\dfrac{d}{{dy}}\left( {\sin x} \right) = \cos x
  2. ddy(cosx)=sinx\dfrac{d}{{dy}}\left( {\cos x} \right) = - \sin x
  3. ddy(tanx)=sec2x\dfrac{d}{{dy}}\left( {\tan x} \right) = {\sec ^2}x
  4. ddy(secx)=secx.tanx\dfrac{d}{{dy}}\left( {\sec x} \right) = \sec x.\tan x
  5. ddy(cosecx)=cosecx.cotx\dfrac{d}{{dy}}\left( {\cos ecx} \right) = - \cos ecx.\cot x
  6. ddy(cotx)=cosec2x\dfrac{d}{{dy}}\left( {\cot x} \right) = - \cos e{c^2}x