Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If xy = e(x – y) , then dydx\frac {dy}{dx} =?

A

log x(1+logx)2\frac {log \ x}{(1+ log x)^2}

B

log x(1+logx)\frac {log \ x}{(1+ log x)}

C

xlog x(1+logx)2\frac {xlog \ x}{(1+ log x)^2}

D

log xx(1+logx)2\frac {log \ x}{x(1+ log x)^2}

Answer

log x(1+logx)2\frac {log \ x}{(1+ log x)^2}

Explanation

Solution

xy = e(x−y)
On taking log both sides:
logxy = log e(x−y).
ylogx = (x−y)log e
ylogx = x−y
y+ylogx = x;
y = x1+logx\frac {x}{1+logx}
On differentiating both sides with respect to x:
dydx\frac {dy}{dx} = (1+log x)1x(1x)(1+logx)2\frac {(1+log \ x)1- x(\frac{1}{x})}{(1+ log x)^2}
dydx\frac {dy}{dx} = 1+log x1(1+logx)2\frac {1+log \ x-1}{(1+ log x)^2}
dydx\frac {dy}{dx} = log x(1+logx)2\frac {log \ x}{(1+ log x)^2}
Therefore, the correct option is (A) log x(1+logx)2\frac {log \ x}{(1+ log x)^2}.