Solveeit Logo

Question

Question: If \[xy=a{{x}^{2}}+\left( \dfrac{b}{x} \right)\], then find the value of \[x\dfrac{{{d}^{2}}y}{d{{x}...

If xy=ax2+(bx)xy=a{{x}^{2}}+\left( \dfrac{b}{x} \right), then find the value of xd2ydx2+2dydx=x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=
(A) yx\dfrac{y}{x} (B) yx\dfrac{-y}{x}
(C) 2yx\dfrac{2y}{x} (D) 2yx\dfrac{-2y}{x}

Explanation

Solution

Hint: Carefully examine the given equation and try to convert it such that LHS just has yy term. In this way it will be easy for us to find the first and second derivative and substitute it in the final equation to calculate.

The given expression is xy=ax2+(bx)xy=a{{x}^{2}}+\left( \dfrac{b}{x} \right)
We need to find, xd2ydx2+2dydx.x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}.
For this problem first let us find dydx\dfrac{dy}{dx}and d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.
So, consider the given expression,xy=ax2+(bx)xy=a{{x}^{2}}+\left( \dfrac{b}{x} \right)
Dividing with x'x' on both sides, we get
xyx=ax2x+bxx\dfrac{xy}{x}=\dfrac{a{{x}^{2}}}{x}+\dfrac{\dfrac{b}{x}}{x}
Cancelling the like terms, we get
y=ax+bx2=ax+bx2\Rightarrow y=ax+\dfrac{b}{{{x}^{2}}}=ax+b{{x}^{-2}}
Now, by differentiating both sides with respect toxx, we get
dydx=ddx(ax)+ddx(bx2)\dfrac{dy}{dx}=\dfrac{d}{dx}(ax)+\dfrac{d}{dx}(b{{x}^{-2}})
Taking out the constant terms, we get
dydx=addx(x)+bddx(x2)\dfrac{dy}{dx}=a\dfrac{d}{dx}(x)+b\dfrac{d}{dx}({{x}^{-2}})
Now we know, d(xn)dx=n(xn1)\dfrac{d\left( {{x}^{n}} \right)}{dx}=n\left( {{x}^{n-1}} \right) , so the above equation becomes

& \dfrac{dy}{dx}=a(1)+b\left( -2{{x}^{-2-1}} \right) \\\ & \dfrac{dy}{dx}=a+b(-2{{x}^{-3}}) \\\ \end{aligned}$$ $$\dfrac{dy}{dx}=a-2b{{x}^{-3}}............(i)$$ Now we find the second derivative. Let us differentiate both sides of equation (i) with respect to $'x'$, we get $$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( a-2b{{x}^{-3}} \right)$$ This can be written as, $$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( a \right)-\dfrac{d}{dx}\left( 2b{{x}^{-3}} \right)$$ We know differentiation of constant term is zero and taking out the constant terms, we get$$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=0-2b\dfrac{d}{dx}\left( {{x}^{-3}} \right)$$ Now we know, $$\dfrac{d\left( {{x}^{n}} \right)}{dx}=n\left( {{x}^{n-1}} \right)$$ , so the above equation becomes $$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-2b\left( -3{{x}^{-3-1}} \right)$$ $$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=6b{{x}^{-4}}.............(ii)$$ Now consider the other equation, $$x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=$$ Now by substituting values from equation (i) and (ii), we get $$x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=x\left( 6b{{x}^{-4}} \right)+2\left( a-2b{{x}^{-3}} \right)$$ $$\begin{aligned} & x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=6b{{x}^{-3}}+2a-4b{{x}^{-3}} \\\ & x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2a+2b{{x}^{-3}} \\\ & x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left( a+\dfrac{b}{{{x}^{3}}} \right) \\\ \end{aligned}$$ Now by multiplying and dividing with $$\left( {{x}^{2}} \right)$$ on RHS we get, $$\begin{aligned} & x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left[ a+\dfrac{b}{{{x}^{3}}} \right]\times \dfrac{{{x}^{2}}}{{{x}^{2}}} \\\ & x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left[ ax{}^{2}+\dfrac{b{{x}^{2}}}{{{x}^{3}}} \right]\times \dfrac{1}{{{x}^{2}}} \\\ & x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left[ a{{x}^{2}}+\dfrac{b}{x} \right]\dfrac{1}{{{x}^{2}}} \\\ \end{aligned}$$ But given, $$xy=a{{x}^{2}}+\left( \dfrac{b}{x} \right)$$, so the above equation becomes, $$x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\left( xy \right)\dfrac{1}{{{x}^{2}}}$$ Cancelling the like terms, we get $$x\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2\dfrac{dy}{dx}=2\dfrac{y}{x}$$ Hence the correct answer is option (C). Note: Another way to solve this problem is directly differentiating the given expression with respect to $x$ instead of dividing the expression by $x$ . $$\dfrac{d(xy)}{dx}=\dfrac{d}{dx}\left( a{{x}^{2}}+\left( \dfrac{b}{x} \right) \right)$$ Now we will apply product rule, so we get $$x\dfrac{d(y)}{dx}+y\dfrac{d(x)}{dy}=\dfrac{d}{dx}\left( a{{x}^{2}} \right)+\dfrac{d}{dx}\left( \dfrac{b}{x} \right)$$ This gets a little complicated. But you will get the same answer.