Solveeit Logo

Question

Mathematics Question on Differential equations

If xy=Asinx+Bcosxxy\, = \,A \,sinx \,+ \,B \,cos \,x is the solution of the differential equation xd2ydx25adydx+xy=0x\frac{d^{2}y}{dx^{2}}-5a\frac{dy}{dx}+xy=0 then the value of aa is equal to

A

25\frac{2}{5}

B

52\frac{5}{2}

C

25\frac{-2}{5}

D

52\frac{-5}{2}

Answer

25\frac{-2}{5}

Explanation

Solution

Given,
xy=Asinx+Bcosx(i)x y=A \sin x+B \cos x \,\,\,\,\,\,\dots(i)
On differentiating w.r.t. xx two times, we get
xdydx+y=AcosxBsinx(ii)x \frac{d y}{d x}+y=A \cos x-B \sin x \,\,\,\,\,\,\,\dots(ii)
and xd2ydx2+dydx+dydx=AsinxBcosxx \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+\frac{d y}{d x}=-A \sin x-B \cos x
xd2ydx2+2dydx=xy\Rightarrow\, x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=-x y [from E (i) ]
xd2ydx2+2dydx+xy=0\Rightarrow \, x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+x y=0
On Comparing with xd2ydx25adydx+xy=0x \frac{d^{2} y}{d x^{2}}-5 a \frac{d y}{d x}+x y=0, we get
5a=2-5 a=2
a=25\Rightarrow \,a=-\frac{2}{5}