Solveeit Logo

Question

Question: If x<sup>y</sup> . y<sup>x</sup> = 16 then \(\frac{dy}{dx}\) at (2, 2) is –...

If xy . yx = 16 then dydx\frac{dy}{dx} at (2, 2) is –

A

–1

B

0

C

1

D

None of these

Answer

–1

Explanation

Solution

xy yx = 16

∴ loge xy + loge yx = loge 16

⇒ y loge x + x loge y = 4 loge 2

Now differentiating both side w.r.t.x

yx\frac{y}{x} + loge x dydx\frac{dy}{dx} + xy\frac { x } { y } dydx\frac{dy}{dx} + loge y . 1 = 0

dydx\frac{dy}{dx} = – (logey+yx)(logex+xy)\frac{\left( \log_{e}y + \frac{y}{x} \right)}{\left( \log_{e}x + \frac{x}{y} \right)}

 dydx(2,2)\left. \ \frac{dy}{dx} \right|_{(2,2)}= – (loge2+1)(loge2+1)\frac{(\log_{e}2 + 1)}{(\log_{e}2 + 1)} = – 1.