Solveeit Logo

Question

Question: If x<sup>y</sup> = e<sup>x–y</sup> then \(\frac{dy}{dx}\) is equal to –...

If xy = ex–y then dydx\frac{dy}{dx} is equal to –

A

(1 + log x)–1

B

(1 + logx)–2

C

(log x) (1 + logx)–2

D

None of these

Answer

(log x) (1 + logx)–2

Explanation

Solution

xy = ex – y ⇒ y logx = x – y .........(i)

yx\frac{y}{x} + logx dydx\frac{dy}{dx} = 1 – dydx\frac{dy}{dx}

dydx\frac{dy}{dx} (1+logx) = 1 – yx\frac{y}{x}

dydx\frac{dy}{dx}= (1yx)\left( 1–\frac{y}{x} \right).1(1+logx)\frac{1}{(1 + \log x)}

from (i) put value of y

= [1x(1+logx)×1x]\left\lbrack 1–\frac{x}{(1 + \log x)} \times \frac{1}{x} \right\rbrack (11+logx)\left( \frac{1}{1 + \log x} \right)

= 1+logx1(1+logx)2\frac{1 + \log x–1}{(1 + \log x)^{2}} = (logx). (1 + logx)–2