Solveeit Logo

Question

Question: If x<sup>y</sup> = e<sup>x–y</sup>, then \(\frac{dy}{dx}\) is equal to...

If xy = ex–y, then dydx\frac{dy}{dx} is equal to

A

y(1+logx)2\frac{y}{(1 + \log x)^{2}}

B

x(1+logx)2\frac{x}{(1 + \log x)^{2}}

C

logx(1+logx)2\frac{\log x}{(1 + \log x)^{2}}

D

none of these

Answer

logx(1+logx)2\frac{\log x}{(1 + \log x)^{2}}

Explanation

Solution

xy = ex – y ⇒ y log x = (x – y) . 1 ⇒ y(1 + log x) = x

y = x1+logx\frac{x}{1 + \log x} ⇒ dydx=(1+logx).1x(0+1/x)(1+logx)2\frac{dy}{dx} = \frac{(1 + \log x).1 - x(0 + 1/x)}{(1 + \log x)^{2}}

= logx / (1 + log x)2