Solveeit Logo

Question

Question: If x<sup>y</sup> = e<sup>x–y</sup>, then dy/dx is:...

If xy = ex–y, then dy/dx is:

A

y1+logx\frac{y}{1 + \log x}

B

xy(1+logx)2\frac{x - y}{(1 + \log x)^{2}}

C

xy1+logx\frac{x - y}{1 + \log x}

D

logx(1+logx)2\frac{\log x}{(1 + \log x)^{2}}

Answer

logx(1+logx)2\frac{\log x}{(1 + \log x)^{2}}

Explanation

Solution

xy = ex–y

y log x = (x – y) log e

y (1 + log x) = x

y = x1+logx\frac{x}{1 + \log x}

dydx\frac{dy}{dx}= (1+logx).1x(0+1x)(1+logx)2\frac{(1 + \log x).1 - x\left( 0 + \frac{1}{x} \right)}{(1 + \log x)^{2}}= logx(1+logx)2\frac{\log x}{(1 + \log x)^{2}}