Solveeit Logo

Question

Question: If x<sup>m</sup> occurs in the expansion of \(\left( x + \frac{1}{x^{2}} \right)^{2n}\), then the co...

If xm occurs in the expansion of (x+1x2)2n\left( x + \frac{1}{x^{2}} \right)^{2n}, then the co-efficient of xm is

A

(2n)!(2nm3)!(4n+m3)!\frac{(2n)!}{\left( \frac{2n - m}{3} \right)!\left( \frac{4n + m}{3} \right)!}

B

(2n)!n!(2nm)!\frac{(2n)!}{n!(2n - m)!}

C

(2n)!3!3!(2nm)!\frac{(2n)!3!3!}{(2n - m)!}

D

None of these

Answer

(2n)!(2nm3)!(4n+m3)!\frac{(2n)!}{\left( \frac{2n - m}{3} \right)!\left( \frac{4n + m}{3} \right)!}

Explanation

Solution

General term in the expansion is 2nCrx2nr1x2r2nC_{r}x^{2n - r}\frac{1}{x^{2r}}

= 2nCrx2n3r2nC_{r}x^{2n - 3r}

For xm, 2n − 3r = m ⇒ r=2nm3r = \frac{2n - m}{3}

so that the coefficient of xm is 2nC2nm32nC_{\frac{2n - m}{3}}