Solveeit Logo

Question

Question: If x<sup>2</sup> – x + 1 = 0, then the value of \(\sum_{n = 1}^{5}\left( x^{n} + \frac{1}{x^{n}} \ri...

If x2 – x + 1 = 0, then the value of n=15(xn+1xn)2\sum_{n = 1}^{5}\left( x^{n} + \frac{1}{x^{n}} \right)^{2}is -n=15(xn+1xn)2\sum_{n = 1}^{5}\left( x^{n} + \frac{1}{x^{n}} \right)^{2}is –

A

8

B

10

C

12

D

None of these

Answer

8

Explanation

Solution

Sol. x2 – x + 1 = 0

Ž x = 1±3i2\frac{1 \pm \sqrt{3}i}{2} = –w, –w2

\ n=15(x2n+1x2n+2)\sum_{n = 1}^{5}\left( x^{2n} + \frac{1}{x^{2n}} + 2 \right)

Ž (x2+1x2+2)\left( x^{2} + \frac{1}{x^{2}} + 2 \right) + (x4+1x4+2)\left( x^{4} + \frac{1}{x^{4}} + 2 \right) + (x6+1x6+2)\left( x^{6} + \frac{1}{x^{6}} + 2 \right)

+ (x8+1x8+2)\left( x^{8} + \frac{1}{x^{8}} + 2 \right) + (x10+1x10+2)\left( x^{10} + \frac{1}{x^{10}} + 2 \right)

Ž (w2 + w4 + w6 + w8 + w10) +

(1ω2+1ω4+1ω6+1ω8+1ω10)\left( \frac{1}{\omega^{2}} + \frac{1}{\omega^{4}} + \frac{1}{\omega^{6}} + \frac{1}{\omega^{8}} + \frac{1}{\omega^{10}} \right) + 10

Ž – 1 – 1 + 10 = 8.

Hence (1) is correct answer.