Solveeit Logo

Question

Question: If (x<sup>2</sup> –1) \(\frac{dy}{dx}\) + 2xy = 1, y (0) = 0 then y(2) =...

If (x2 –1) dydx\frac{dy}{dx} + 2xy = 1, y (0) = 0 then y(2) =

A

1

B

1/3

C

2/3

D

2

Answer

2/3

Explanation

Solution

dydx\frac{dy}{dx}+2xyx21\frac{2xy}{x^{2}–1}=1x21\frac{1}{x^{2}–1}⇒ P = 2xx21\frac{2x}{x^{2}–1}, Q = 1x21\frac{1}{x^{2}–1}

(1) I.F. = e2xx21.dxe^{\int_{}^{}\frac{2x}{x^{2}–1}.dx} = elog(x21)e^{\log(x^{2}–1)}dx = x2 – 1

(2) y . (x2 – 1) = 1x21\int_{}^{}\frac{1}{x^{2}–1} × (x2 – 1) dx

⇒ y(x2 – 1) = x + c

(3) y (0) = 0 ⇒ put x = y = 0

⇒ (–1) = c ⇒ c = 0

Now curve ⇒ y (x2–1) = x

⇒ y = xx21\frac{x}{x^{2}–1}

(4) Now y(2) ⇒ x = 2 ∴ y = 2221\frac{2}{2^{2}–1} = 23\frac{2}{3}