Solveeit Logo

Question

Question: If (x<sub>1</sub>, y<sub>1</sub>) is a point on the hyperbola\(\frac{x^{2}}{64}\)–\(\frac{y^{2}}{36}...

If (x1, y1) is a point on the hyperbolax264\frac{x^{2}}{64}y236\frac{y^{2}}{36}= 1 in the first quadrant whose distance from right focus is 92\frac{9}{2}then (x1 + y1) must be

A

292\frac{29}{2}

B

192\frac{19}{2}

C

312\frac{31}{2}

D

–7

Answer

292\frac{29}{2}

Explanation

Solution

x264\frac{x^{2}}{64}y236\frac{y^{2}}{36}= 1 …(1)

e =1+3664\sqrt{1 + \frac{36}{64}}=54\frac{5}{4}

Now,

PS = e.PM = e(NQ)

= e (CN – CQ) = e(x1 – a/e)

= ex1 – a = 92\frac{9}{2}

Ž 54\frac{5}{4}x1 – 8 =92\frac{9}{2}Ž x1 = 10

By (1) Ž y1 = ±92\frac{9}{2} Q y > 0

\ y1 = 92\frac{9}{2}

\ (x1 + y1) = 10 + 92\frac{9}{2}= 292\frac{29}{2}