Question
Question: If *x*<sub>1</sub>, *x*<sub>2</sub>, *x*<sub>3</sub>,…….*x*<sub>n</sub> are the roots of *x*<sup>n</...
If x1, x2, x3,…….xn are the roots of xn + ax + b = 0, then the value of (x1 – x2) (x1 – x3) (x1 – x4)……… (x1 – xn) is equal to
A
nx1 + b
B
n (x1)n–1
C
n(x1)n–1 + a
D
n(x1)n–1 + b
Answer
n(x1)n–1 + a
Explanation
Solution
xn + ax + b = (x – x1) (x – x2)….(x – xn)
⇒ (x – x2) (x – x3)….(x – xn) = (x−x1)xn+ax+b
⇒ (x1 – x2) (x1 – x3)….(x1 – xn)
= limx→x1 x−x1xn+ax+b
= nx1n–1+ a.
Hence (3) is correct answer.