Question
Question: If \(x\sin\left( \frac{y}{x} \right)dy = \left\lbrack y\sin\left( \frac{y}{x} \right) - x \right\rbr...
If xsin(xy)dy=[ysin(xy)−x]dx and y(1)=2π, then the value of cos(xy) is equal to
A
x
B
\frac{1}{x}
C
log x
D
e^{x}
Answer
log x
Explanation
Solution
Soxsin(xy)dy=[ysin(xy)−x]dx
⇒ dxdy=xsin(xy)ysin(xy)−x=sin(xy)xysin(xy)−1
Let xy=u and dxdy=xdxdu+u
∴xdxdu+u=sinuusinu−1
⇒xdxdu=sinuusinu−1usinu⇒sinudu=x1dx
On integrating both sides, we get
cosu=logx+C⇒cos(xy)=logx+C
∴y(1)=2π ∴ cosp2=log1+C⇒C=0
Thus, cos(xy)=logx