Solveeit Logo

Question

Question: If \(x\sin\left( \frac{y}{x} \right)dy = \left\lbrack y\sin\left( \frac{y}{x} \right) - x \right\rbr...

If xsin(yx)dy=[ysin(yx)x]dxx\sin\left( \frac{y}{x} \right)dy = \left\lbrack y\sin\left( \frac{y}{x} \right) - x \right\rbrack dx and y(1)=π2y(1) = \frac{\pi}{2}, then the value of cos(yx)\cos\left( \frac{y}{x} \right) is equal to

A

x

B

\frac{1}{x}

C

log x

D

e^{x}

Answer

log x

Explanation

Solution

Soxsin(yx)dy=[ysin(yx)x]dxx\sin\left( \frac{y}{x} \right)dy = \left\lbrack y\sin\left( \frac{y}{x} \right) - x \right\rbrack dx

\Rightarrow dydx=ysin(yx)xxsin(yx)=yxsin(yx)1sin(yx)\frac{dy}{dx} = \frac{y\sin\left( \frac{y}{x} \right) - x}{x\sin\left( \frac{y}{x} \right)} = \frac{\frac{y}{x}\sin\left( \frac{y}{x} \right) - 1}{\sin\left( \frac{y}{x} \right)}

Let yx=u\frac{y}{x} = u and dydx=xdudx+u\frac{dy}{dx} = x\frac{du}{dx} + u

xdudx+u=usinu1sinu\therefore x\frac{du}{dx} + u = \frac{u\sin u - 1}{\sin u}

xdudx=usinu1usinusinusinudu=1xdx\Rightarrow x\frac{du}{dx} = \frac{u\sin u - 1u\sin u}{\sin u} \Rightarrow \sin udu = \frac{1}{x}dx

On integrating both sides, we get

cosu=logx+Ccos(yx)=logx+C\cos u = \log x + C \Rightarrow \cos\left( \frac{y}{x} \right) = \log x + C

y(1)=π2\therefore y(1) = \frac{\pi}{2} \therefore cosp2=log1+CC=0\cos^{p}2 = \log 1 + C \Rightarrow C = 0

Thus, cos(yx)=logx\cos\left( \frac{y}{x} \right) = \log x