Solveeit Logo

Question

Question: If \(x\sin^{3}\alpha + y\cos^{3}\alpha = \sin\alpha\cos\alpha\) and \(x\sin\alpha - y\cos\alpha = 0,...

If xsin3α+ycos3α=sinαcosαx\sin^{3}\alpha + y\cos^{3}\alpha = \sin\alpha\cos\alpha and xsinαycosα=0,x\sin\alpha - y\cos\alpha = 0, then x2+y2=x^{2} + y^{2} =

A

– 1

B

±1

C

1

D

None of these

Answer

1

Explanation

Solution

We have xsin3α+ycos3α=sinαcosαx\sin^{3}\alpha + y\cos^{3}\alpha = \sin\alpha\cos\alpha …..(i)

and xsinαycosα=0x\sin\alpha - y\cos\alpha = 0 …..(ii)

Now from (ii), xsinα=ycosαx\sin\alpha = y\cos\alpha

Putting in (i), we get

ycosαsin2α+ycos3α=sinαcosα\Rightarrow y\cos\alpha\sin^{2}\alpha + y\cos^{3}\alpha = \sin\alpha\cos\alpha

ycosα{sin2α+cos2α}=sinαcosα\Rightarrow y\cos\alpha\left\{ \sin^{2}\alpha + \cos^{2}\alpha \right\} = \sin\alpha\cos\alpha

ycosα=sinαcosαy=sinα\Rightarrow y\cos\alpha = \sin\alpha\cos\alpha \Rightarrow y = \sin\alpha and x=cosαx = \cos\alpha

Hence, x2+y2=sin2α+cos2α=1.x^{2} + y^{2} = \sin^{2}\alpha + \cos^{2}\alpha = 1.