Solveeit Logo

Question

Question: If $x^{(\log_2x)^2-6\log_2x+11}=64$, then x is equal to...

If x(log2x)26log2x+11=64x^{(\log_2x)^2-6\log_2x+11}=64, then x is equal to

A

2

B

4

C

6

D

8

Answer

2, 4, 8

Explanation

Solution

To solve the equation x(log2x)26log2x+11=64x^{(\log_2x)^2-6\log_2x+11}=64, we follow these steps:

  1. Take logarithm on both sides: Since the equation involves log2x\log_2x, it is convenient to take log2\log_2 on both sides of the equation. log2(x(log2x)26log2x+11)=log2(64)\log_2\left(x^{(\log_2x)^2-6\log_2x+11}\right) = \log_2(64)

  2. Apply logarithm properties: Use the property logb(MP)=Plogb(M)\log_b(M^P) = P \cdot \log_b(M) on the left side and evaluate the right side. The exponent (log2x)26log2x+11(\log_2x)^2-6\log_2x+11 comes down as a multiplier. Also, 64=2664 = 2^6, so log2(64)=log2(26)=6\log_2(64) = \log_2(2^6) = 6. ((log2x)26log2x+11)log2x=6((\log_2x)^2-6\log_2x+11) \cdot \log_2x = 6

  3. Substitute a variable: Let y=log2xy = \log_2x. This transforms the equation into a polynomial equation in yy. (y26y+11)y=6(y^2-6y+11) \cdot y = 6 y36y2+11y=6y^3 - 6y^2 + 11y = 6

  4. Rearrange into a standard polynomial form: y36y2+11y6=0y^3 - 6y^2 + 11y - 6 = 0

  5. Solve the cubic equation for y: We can find integer roots by testing divisors of the constant term (-6), which are ±1,±2,±3,±6\pm1, \pm2, \pm3, \pm6.

    • For y=1y=1: 136(1)2+11(1)6=16+116=01^3 - 6(1)^2 + 11(1) - 6 = 1 - 6 + 11 - 6 = 0. So, y=1y=1 is a root.
    • For y=2y=2: 236(2)2+11(2)6=824+226=02^3 - 6(2)^2 + 11(2) - 6 = 8 - 24 + 22 - 6 = 0. So, y=2y=2 is a root.
    • For y=3y=3: 336(3)2+11(3)6=2754+336=03^3 - 6(3)^2 + 11(3) - 6 = 27 - 54 + 33 - 6 = 0. So, y=3y=3 is a root.

    Since we found three roots for a cubic equation, these are all the roots. The roots are y=1,y=2,y=3y=1, y=2, y=3.

  6. Substitute back to find x: Now, use y=log2xy = \log_2x to find the values of xx.

    • If y=1y=1: log2x=1    x=21    x=2\log_2x = 1 \implies x = 2^1 \implies x = 2
    • If y=2y=2: log2x=2    x=22    x=4\log_2x = 2 \implies x = 2^2 \implies x = 4
    • If y=3y=3: log2x=3    x=23    x=8\log_2x = 3 \implies x = 2^3 \implies x = 8

All these values of xx (2, 4, 8) are positive, satisfying the domain requirement for logarithms (x>0x > 0).