Solveeit Logo

Question

Question: If xf(x) = 3f <sup>2</sup>(x) + 2, then \(\int_{}^{}\frac{2x^{2} - 12xf(x) + f(x)}{(6f(x) - x)(x^{2}...

If xf(x) = 3f 2(x) + 2, then 2x212xf(x)+f(x)(6f(x)x)(x2f(x))2\int_{}^{}\frac{2x^{2} - 12xf(x) + f(x)}{(6f(x) - x)(x^{2} - f(x))^{2}}dx equals-

A

1x2f(x)\frac{1}{x^{2} - f(x)}+ c

B

1x2+f(x)\frac{1}{x^{2} + f(x)}+ c

C

1xf(x)\frac{1}{x - f(x)}+ c

D

1x+f(x)\frac{1}{x + f(x)}+ c

Answer

1x2f(x)\frac{1}{x^{2} - f(x)}+ c

Explanation

Solution

f ¢ (x) = f(x)6f(x)x\frac { f ( x ) } { 6 f ( x ) - x }

Now I = dx

̃ I = –dx = 1x2f(x)\frac { 1 } { x ^ { 2 } - f ( x ) }+ C