Solveeit Logo

Question

Question: If $x=e^{y+e^{y+e^{y+\cdots\infty}}}$, where $x>0$, then $\frac{dy}{dx}$ is:...

If x=ey+ey+ey+x=e^{y+e^{y+e^{y+\cdots\infty}}}, where x>0x>0, then dydx\frac{dy}{dx} is:

A

x1x\frac{x}{1-x}

B

1xx\frac{1-x}{x}

C

x1x\frac{x-1}{x}

D

x21+x\frac{x^2}{1+x}

Answer

1xx\frac{1-x}{x}

Explanation

Solution

The given equation is x=ey+ey+ey+x=e^{y+e^{y+e^{y+\cdots\infty}}}.

Observe the repeating pattern in the exponent. Let the entire expression on the right-hand side be xx. The exponent part can be written as y+(ey+ey+)y + (e^{y+e^{y+\cdots\infty}}). The term in the parenthesis, ey+ey+e^{y+e^{y+\cdots\infty}}, is identical to the original expression xx. Therefore, we can simplify the given equation as: x=ey+xx = e^{y+x}

Now, we need to find dydx\frac{dy}{dx}. We can do this by first expressing yy in terms of xx, or by using implicit differentiation.

Method 1: Expressing y in terms of x Take the natural logarithm on both sides of the equation x=ey+xx = e^{y+x}: ln(x)=ln(ey+x)\ln(x) = \ln(e^{y+x}) Using the property ln(eA)=A\ln(e^A) = A: ln(x)=y+x\ln(x) = y+x

Now, isolate yy: y=ln(x)xy = \ln(x) - x

Differentiate yy with respect to xx: dydx=ddx(ln(x)x)\frac{dy}{dx} = \frac{d}{dx}(\ln(x) - x) Using the differentiation rules ddx(lnu)=1u\frac{d}{dx}(\ln u) = \frac{1}{u} and ddx(x)=1\frac{d}{dx}(x) = 1: dydx=1x1\frac{dy}{dx} = \frac{1}{x} - 1

To combine the terms into a single fraction: dydx=1xxx\frac{dy}{dx} = \frac{1}{x} - \frac{x}{x} dydx=1xx\frac{dy}{dx} = \frac{1-x}{x}

Method 2: Implicit Differentiation Start with the simplified equation x=ey+xx = e^{y+x}. Differentiate both sides with respect to xx: ddx(x)=ddx(ey+x)\frac{d}{dx}(x) = \frac{d}{dx}(e^{y+x}) 1=ey+xddx(y+x)1 = e^{y+x} \cdot \frac{d}{dx}(y+x) (using the chain rule, where ddu(eu)=eu\frac{d}{du}(e^u) = e^u and u=y+xu = y+x) 1=ey+x(dydx+ddx(x))1 = e^{y+x} \cdot \left(\frac{dy}{dx} + \frac{d}{dx}(x)\right) 1=ey+x(dydx+1)1 = e^{y+x} \cdot \left(\frac{dy}{dx} + 1\right)

Now, substitute xx back for ey+xe^{y+x} (from the initial simplified equation): 1=x(dydx+1)1 = x \left(\frac{dy}{dx} + 1\right)

Divide both sides by xx: 1x=dydx+1\frac{1}{x} = \frac{dy}{dx} + 1

Isolate dydx\frac{dy}{dx}: dydx=1x1\frac{dy}{dx} = \frac{1}{x} - 1 dydx=1xx\frac{dy}{dx} = \frac{1-x}{x}

Both methods yield the same result.