Solveeit Logo

Question

Question: If \(xe^{xy} = y + \sin^{2}x\), then at \(x = 0\), \(\frac{dy}{dx}\)=...

If xexy=y+sin2xxe^{xy} = y + \sin^{2}x, then at x=0x = 0, dydx\frac{dy}{dx}=

A

– 1

B

– 2

C

1

D

2

Answer

1

Explanation

Solution

We are given that xexy=y+sin2xxe^{xy} = y + \sin^{2}x

When x=0x = 0, we get y=0y = 0

Differentiating both sides w.r.t. x, we get,

exy+xexy[xdydx+y]=dydx+2sinxcosxe^{xy} + xe^{xy}\left\lbrack x\frac{dy}{dx} + y \right\rbrack = \frac{dy}{dx} + 2\sin x\cos x

Putting, x=0x = 0, y=0y = 0, we get dydx=1\frac{dy}{dx} = 1.