Solveeit Logo

Question

Mathematics Question on Derivatives of Functions in Parametric Forms

if (xe)y=ex(xe)^y = e^x, then dydx\frac{dy}{dx} is =

A

logx(1+logx)2\frac {log x}{ (1+logx)^2}

B

1(1+logx)2\frac {1}{ (1+logx)^2}

C

logx(1+logx)\frac {log x}{ (1+logx)}

D

exx(y1)\frac {e^x}{ x(y-1)}

Answer

logx(1+logx)2\frac {log x}{ (1+logx)^2}

Explanation

Solution

(xe)y=ex(x e)^{y}=e^{x}
y(logx+1)=x\Rightarrow y(\log x+1)=x
y=x/(logx+1)\Rightarrow y=x /(\log x+1)
(dydx=log x(log x+1)2)\therefore \left(\frac{dy}{dx} = \frac{log \ x}{(log \ x + 1)^2}\right)