Solveeit Logo

Question

Question: If $xdy - y \log_e ydx + 2yx^3 \sin xdx + yx^4 \cos xdx = 0$, then solution is...

If xdyylogeydx+2yx3sinxdx+yx4cosxdx=0xdy - y \log_e ydx + 2yx^3 \sin xdx + yx^4 \cos xdx = 0, then solution is

A

y=ex(cx2tanx)y = e^{x}(c-x^2 \tan x)

B

y=ex2(cxsinx)y = e^{x^2}(c-x \sin x)

C

y=ex(c+x2sinx)y = e^{x}(c+x^2 \sin x)

D

y=ex2(c+xsinx)y = e^{x^2}(c+x \sin x)

Answer

None of the given options are correct. The correct solution is lny=cxx3sinx\ln y = cx - x^3\sin x, or y=ecxx3sinxy=e^{cx-x^3\sin x}.

Explanation

Solution

Here's how to solve the differential equation and why none of the provided options match the correct solution:

  1. Rewrite the Equation:

    The given differential equation is:

    xdyylnydx+2yx3sinxdx+yx4cosxdx=0x\,dy - y\ln y\,dx + 2yx^3\sin x\,dx + yx^4\cos x\,dx=0

    Group the dxdx terms:

    xdy+y(2x3sinx+x4cosxlny)dx=0x\,dy + y\Bigl(2x^3\sin x + x^4\cos x -\ln y\Bigr)dx=0
  2. Divide and Substitute:

    Divide the entire equation by xyxy (assuming x0x \ne 0 and y>0y > 0):

    dyy+[2x2sinx+x3cosxlnyx]dx=0\frac{dy}{y} + \Bigl[2x^2\sin x + x^3\cos x -\frac{\ln y}{x}\Bigr]dx=0

    Substitute u=lnyu = \ln y, so dyy=du\frac{dy}{y} = du. The equation becomes:

    du+[2x2sinx+x3cosxux]dx=0du + \Bigl[2x^2\sin x + x^3\cos x -\frac{u}{x}\Bigr]dx=0

    Rearrange to get a linear ODE:

    dudx1xu=2x2sinxx3cosx\frac{du}{dx} - \frac{1}{x}\,u = -2x^2\sin x - x^3\cos x
  3. Solve the Linear ODE:

    The integrating factor is:

    μ(x)=e1xdx=elnx=1x\mu(x)=e^{-\int\frac{1}{x}dx} = e^{-\ln|x|} = \frac{1}{x}

    Multiply the ODE by μ(x)=1x\mu(x) = \frac{1}{x}:

    1xdudx1x2u=2xsinxx2cosx\frac{1}{x}\frac{du}{dx} - \frac{1}{x^2}\,u = -2x\sin x - x^2\cos x

    The left side is the derivative of ux\frac{u}{x}:

    ddx(ux)=2xsinxx2cosx\frac{d}{dx}\Bigl(\frac{u}{x}\Bigr)= -2x\sin x - x^2\cos x

    Integrate both sides:

    ux=[2xsinx+x2cosx]dx\frac{u}{x}=-\int\Bigl[2x\sin x+x^2\cos x\Bigr]dx

    Since ddx(x2sinx)=2xsinx+x2cosx\frac{d}{dx}(x^2\sin x)=2x\sin x+x^2\cos x, the integral is:

    [2xsinx+x2cosx]dx=x2sinx\int\Bigl[2x\sin x+x^2\cos x\Bigr]dx=x^2\sin x

    So,

    ux=x2sinx+c,oru=x3sinx+cx\frac{u}{x}=-x^2\sin x + c,\quad \text{or}\quad u=-x^3\sin x + cx
  4. Back-Substitute:

    Substitute back u=lnyu = \ln y:

    lny=cxx3sinx,ory=ecxx3sinx\ln y = cx - x^3\sin x,\quad \text{or}\quad y = e^{cx-x^3\sin x}
  5. Comparison with Options:

    None of the provided options match the derived solution. The correct general solution is of the form y=ecxx3sinxy = e^{cx - x^3 \sin x}.