Question
Question: If $xdy - y \log_e ydx + 2yx^3 \sin xdx + yx^4 \cos xdx = 0$, then solution is...
If xdy−ylogeydx+2yx3sinxdx+yx4cosxdx=0, then solution is
y=ex(c−x2tanx)
y=ex2(c−xsinx)
y=ex(c+x2sinx)
y=ex2(c+xsinx)
None of the given options are correct. The correct solution is lny=cx−x3sinx, or y=ecx−x3sinx.
Solution
Here's how to solve the differential equation and why none of the provided options match the correct solution:
-
Rewrite the Equation:
The given differential equation is:
xdy−ylnydx+2yx3sinxdx+yx4cosxdx=0Group the dx terms:
xdy+y(2x3sinx+x4cosx−lny)dx=0 -
Divide and Substitute:
Divide the entire equation by xy (assuming x=0 and y>0):
ydy+[2x2sinx+x3cosx−xlny]dx=0Substitute u=lny, so ydy=du. The equation becomes:
du+[2x2sinx+x3cosx−xu]dx=0Rearrange to get a linear ODE:
dxdu−x1u=−2x2sinx−x3cosx -
Solve the Linear ODE:
The integrating factor is:
μ(x)=e−∫x1dx=e−ln∣x∣=x1Multiply the ODE by μ(x)=x1:
x1dxdu−x21u=−2xsinx−x2cosxThe left side is the derivative of xu:
dxd(xu)=−2xsinx−x2cosxIntegrate both sides:
xu=−∫[2xsinx+x2cosx]dxSince dxd(x2sinx)=2xsinx+x2cosx, the integral is:
∫[2xsinx+x2cosx]dx=x2sinxSo,
xu=−x2sinx+c,oru=−x3sinx+cx -
Back-Substitute:
Substitute back u=lny:
lny=cx−x3sinx,ory=ecx−x3sinx -
Comparison with Options:
None of the provided options match the derived solution. The correct general solution is of the form y=ecx−x3sinx.