Solveeit Logo

Question

Question: If $x_i \in \{0, 1, 2\}, y_i \in \{1, 2, 3\}$ then the value of $\begin{vmatrix} 2x_1y_1 & x_1y_2 +...

If xi{0,1,2},yi{1,2,3}x_i \in \{0, 1, 2\}, y_i \in \{1, 2, 3\} then the value of

2x1y1x1y2+x2y1x1y3+x3y1x1y2+x2y12x2y2x2y3+x3y2x1y3+x3y1x2y3+x3y22x3y3\begin{vmatrix} 2x_1y_1 & x_1y_2 + x_2y_1 & x_1y_3 + x_3y_1 \\ x_1y_2 + x_2y_1 & 2x_2y_2 & x_2y_3 + x_3y_2 \\ x_1y_3 + x_3y_1 & x_2y_3 + x_3y_2 & 2x_3y_3 \end{vmatrix} is

Answer

0

Explanation

Solution

Let the given determinant be DD. The elements of the determinant are MijM_{ij}. Let x=(x1x2x3)\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} and y=(y1y2y3)\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.

Consider the outer product of these two vectors: A=xyT=(x1x2x3)(y1y2y3)=(x1y1x1y2x1y3x2y1x2y2x2y3x3y1x3y2x3y3)A = \mathbf{x} \mathbf{y}^T = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix} = \begin{pmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ x_2y_1 & x_2y_2 & x_2y_3 \\ x_3y_1 & x_3y_2 & x_3y_3 \end{pmatrix}.

The transpose of AA is: AT=(xyT)T=(yT)TxT=yxT=(y1y2y3)(x1x2x3)=(y1x1y1x2y1x3y2x1y2x2y2x3y3x1y3x2y3x3)A^T = (\mathbf{x} \mathbf{y}^T)^T = (\mathbf{y}^T)^T \mathbf{x}^T = \mathbf{y} \mathbf{x}^T = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} = \begin{pmatrix} y_1x_1 & y_1x_2 & y_1x_3 \\ y_2x_1 & y_2x_2 & y_2x_3 \\ y_3x_1 & y_3x_2 & y_3x_3 \end{pmatrix}.

Now, let's form the sum A+ATA + A^T: A+AT=(x1y1x1y2x1y3x2y1x2y2x2y3x3y1x3y2x3y3)+(y1x1y1x2y1x3y2x1y2x2y2x3y3x1y3x2y3x3)A + A^T = \begin{pmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ x_2y_1 & x_2y_2 & x_2y_3 \\ x_3y_1 & x_3y_2 & x_3y_3 \end{pmatrix} + \begin{pmatrix} y_1x_1 & y_1x_2 & y_1x_3 \\ y_2x_1 & y_2x_2 & y_2x_3 \\ y_3x_1 & y_3x_2 & y_3x_3 \end{pmatrix}

A+AT=(x1y1+y1x1x1y2+y1x2x1y3+y1x3x2y1+y2x1x2y2+y2x2x2y3+y2x3x3y1+y3x1x3y2+y3x2x3y3+y3x3)A + A^T = \begin{pmatrix} x_1y_1 + y_1x_1 & x_1y_2 + y_1x_2 & x_1y_3 + y_1x_3 \\ x_2y_1 + y_2x_1 & x_2y_2 + y_2x_2 & x_2y_3 + y_2x_3 \\ x_3y_1 + y_3x_1 & x_3y_2 + y_3x_2 & x_3y_3 + y_3x_3 \end{pmatrix}

A+AT=(2x1y1x1y2+x2y1x1y3+x3y1x1y2+x2y12x2y2x2y3+x3y2x1y3+x3y1x2y3+x3y22x3y3)A + A^T = \begin{pmatrix} 2x_1y_1 & x_1y_2 + x_2y_1 & x_1y_3 + x_3y_1 \\ x_1y_2 + x_2y_1 & 2x_2y_2 & x_2y_3 + x_3y_2 \\ x_1y_3 + x_3y_1 & x_2y_3 + x_3y_2 & 2x_3y_3 \end{pmatrix}.

This is exactly the matrix given in the problem. So, the problem asks for det(A+AT)\det(A+A^T), where A=xyTA = \mathbf{x} \mathbf{y}^T.

The rank of an outer product of two non-zero vectors is 1. Given xi{0,1,2}x_i \in \{0, 1, 2\} and yi{1,2,3}y_i \in \{1, 2, 3\}. Since yi{1,2,3}y_i \in \{1, 2, 3\}, none of the yiy_i can be zero, so y0\mathbf{y} \neq \mathbf{0}. If x=0\mathbf{x} = \mathbf{0} (i.e., x1=x2=x3=0x_1=x_2=x_3=0), then A=0A = \mathbf{0} and AT=0A^T = \mathbf{0}, so A+AT=0A+A^T = \mathbf{0}. The determinant of the zero matrix is 0. If x0\mathbf{x} \neq \mathbf{0}, then rank(A)=rank(xyT)=1\text{rank}(A) = \text{rank}(\mathbf{x} \mathbf{y}^T) = 1. Similarly, rank(AT)=rank(yxT)=1\text{rank}(A^T) = \text{rank}(\mathbf{y} \mathbf{x}^T) = 1.

We know that for any two matrices PP and QQ, rank(P+Q)rank(P)+rank(Q)\text{rank}(P+Q) \le \text{rank}(P) + \text{rank}(Q). Therefore, rank(A+AT)rank(A)+rank(AT)=1+1=2\text{rank}(A+A^T) \le \text{rank}(A) + \text{rank}(A^T) = 1 + 1 = 2. So, the rank of the matrix A+ATA+A^T is at most 2.

The given matrix is a 3×33 \times 3 matrix. If the rank of a n×nn \times n matrix is less than nn, then its determinant is 0. Here, n=3n=3 and rank(A+AT)2\text{rank}(A+A^T) \le 2, which is less than 3. Thus, the determinant of the given matrix is 0.