Solveeit Logo

Question

Question: If \(x^4\) occurs in the \(r^{th}\) term in the expansion of \(\left(x^4 + \frac{1}{x^3}\right)^{15}...

If x4x^4 occurs in the rthr^{th} term in the expansion of (x4+1x3)15\left(x^4 + \frac{1}{x^3}\right)^{15}, then r=r=

A

7

B

8

C

9

D

10

Answer

9

Explanation

Solution

General term in (x4+x3)15\bigl(x^4 + x^{-3}\bigr)^{15} is

Tk+1=(15k)(x4)15k(x3)k=(15k)x4(15k)3k=(15k)x607k.T_{k+1} = \binom{15}{k}(x^4)^{15-k}(x^{-3})^k = \binom{15}{k}\,x^{4(15-k)-3k} = \binom{15}{k}\,x^{60-7k}.

To get x4x^4, set the exponent equal to 4:

607k=47k=56k=8.60 - 7k = 4 \quad\Longrightarrow\quad 7k = 56 \quad\Longrightarrow\quad k = 8.

Hence the term is T8+1=T9T_{8+1}=T_9. Therefore, r=9r=9.