Question
Question: If $x^4 - 2x^3 - 2x^2 + 4x + 3 = 0$ has four real roots $\alpha$, $\beta$, $\gamma$, $\delta$ then $...
If x4−2x3−2x2+4x+3=0 has four real roots α, β, γ, δ then (1+α2)(1+β2)(1+γ2)(1+δ2) is equal to

A
8
B
64
C
72
D
144
Answer
72
Explanation
Solution
Given the polynomial
f(x)=x4−2x3−2x2+4x+3=0,with roots α,β,γ,δ, we need to calculate
(1+α2)(1+β2)(1+γ2)(1+δ2).Key Step:
Notice that
1+α2=(α−i)(α+i).Thus,
∏(1+α2)=∏(α−i)(α+i)=f(i)f(−i)(since f(x)=∏(x−α)).Calculations:
Evaluate f(i):
f(i)=i4−2i3−2i2+4i+3=1−2(−i)−2(−1)+4i+3(using i2=−1,i3=−i,i4=1)=1+2i+2+4i+3=6+6i.Evaluate f(−i):
f(−i)=(−i)4−2(−i)3−2(−i)2+4(−i)+3=1−2(i)−2(−1)−4i+3(since (−i)2=i2=−1,(−i)3=i,(−i)4=1)=1−2i+2−4i+3=6−6i.Now,
f(i)f(−i)=(6+6i)(6−6i)=62+62=36+36=72.