Solveeit Logo

Question

Question: If $x^3 - ax^2 + bx + c = 0$ has the roots $\alpha^2 + \beta^3 + \gamma^4, \beta^2 + \gamma^3 + \alp...

If x3ax2+bx+c=0x^3 - ax^2 + bx + c = 0 has the roots α2+β3+γ4,β2+γ3+α4\alpha^2 + \beta^3 + \gamma^4, \beta^2 + \gamma^3 + \alpha^4 and γ2+α3+β4\gamma^2 + \alpha^3 + \beta^4, where α,β,γ\alpha, \beta, \gamma are the roots of x3x21=0x^3 - x^2 - 1 = 0, then the value of a+bca + b - c is equal to ______.

Answer

12

Explanation

Solution

We are given that if

x3ax2+bx+c=0x^3-ax^2+bx+c=0

has roots

r1=α2+β3+γ4,r2=β2+γ3+α4,r3=γ2+α3+β4,r_1=\alpha^2+\beta^3+\gamma^4,\quad r_2=\beta^2+\gamma^3+\alpha^4,\quad r_3=\gamma^2+\alpha^3+\beta^4,

and α,β,γ\alpha,\beta,\gamma are the roots of

x3x21=0,x^3-x^2-1=0,

we must find a+bca+b-c.

Step 1. For the polynomial x3x21=0x^3-x^2-1=0, by Vieta’s formulas:

α+β+γ=1,αβ+βγ+γα=0,αβγ=1.\alpha+\beta+\gamma=1,\quad \alpha\beta+\beta\gamma+\gamma\alpha=0,\quad \alpha\beta\gamma=1.

Also, note that each root satisfies

α3=α2+1,etc.\alpha^3=\alpha^2+1,\quad \text{etc.}

Step 2. The new roots sum is:

r1+r2+r3=(α2+β2+γ2)+(α3+β3+γ3)+(α4+β4+γ4).r_1+r_2+r_3=(\alpha^2+\beta^2+\gamma^2)+(\alpha^3+\beta^3+\gamma^3)+(\alpha^4+\beta^4+\gamma^4).

Now,

  • α2+β2+γ2=(α+β+γ)22(αβ+βγ+γα)=120=1\alpha^2+\beta^2+\gamma^2=(\alpha+\beta+\gamma)^2-2(\alpha\beta+\beta\gamma+\gamma\alpha)=1^2-0=1,
  • α3+β3+γ3=\alpha^3+\beta^3+\gamma^3= (since α3=α2+1\alpha^3=\alpha^2+1) =α2+β2+γ2+3=1+3=4=\alpha^2+\beta^2+\gamma^2+3=1+3=4,
  • For α4\alpha^4, note α4=αα3=α(α2+1)=α3+α\alpha^4=\alpha\alpha^3=\alpha(\alpha^2+1)=\alpha^3+\alpha. Hence, α4+β4+γ4=(α3+β3+γ3)+(α+β+γ)=4+1=5\alpha^4+\beta^4+\gamma^4=(\alpha^3+\beta^3+\gamma^3)+(\alpha+\beta+\gamma)=4+1=5.

Thus,

r1+r2+r3=1+4+5=10.r_1+r_2+r_3=1+4+5=10.

Since for the polynomial x3ax2+bx+c=0x^3-ax^2+bx+c=0, the sum of roots equals aa, we have

a=10.a=10.

Step 3. A key observation is that

a+bc=(r1+r2+r3)+(r1r2+r2r3+r3r1)+r1r2r3.a+b-c = (r_1+r_2+r_3) + (r_1r_2+r_2r_3+r_3r_1) + r_1r_2r_3.

Recognize that

(1+r1)(1+r2)(1+r3)=1+(r1+r2+r3)+(r1r2+r2r3+r3r1)+r1r2r3.(1+r_1)(1+r_2)(1+r_3) = 1 + (r_1+r_2+r_3)+ (r_1r_2+r_2r_3+r_3r_1) + r_1r_2r_3.

Thus,

a+bc=(1+r1)(1+r2)(1+r3)1.a+b-c = (1+r_1)(1+r_2)(1+r_3)-1.

Step 4. Let us find (1+r1)(1+r2)(1+r3)(1+r_1)(1+r_2)(1+r_3). Note that

1+r1=1+α2+β3+γ4,1+r2=1+β2+γ3+α4,1+r3=1+γ2+α3+β4.1+r_1= 1+\alpha^2+\beta^3+\gamma^4,\quad 1+r_2= 1+\beta^2+\gamma^3+\alpha^4,\quad 1+r_3= 1+\gamma^2+\alpha^3+\beta^4.

A symmetry is revealed when we observe that each expression “collects” one term each in powers 2, 3, and 4 from α,β,γ\alpha,\beta,\gamma. In fact, by rearranging the product, one can show that

(1+r1)(1+r2)(1+r3)=cyc(1+α2+α3+α4).(1+r_1)(1+r_2)(1+r_3)= \prod_{\text{cyc}} \Bigl(1+\alpha^2+\alpha^3+\alpha^4\Bigr).

Now, for any root α\alpha, using α3=α2+1\alpha^3=\alpha^2+1 and

α4=αα3=α(α2+1)=α3+α,\alpha^4=\alpha\alpha^3=\alpha(\alpha^2+1)=\alpha^3+\alpha,

we have

1+α2+α3+α4=1+α2+(α2+1)+(α2+α+1)=3+3α2+α.1+\alpha^2+\alpha^3+\alpha^4 = 1+\alpha^2+(\alpha^2+1)+(\alpha^2+\alpha+1)=3+3\alpha^2+\alpha.

Thus,

(1+r1)(1+r2)(1+r3)=cyc(3α2+α+3).(1+r_1)(1+r_2)(1+r_3)= \prod_{\text{cyc}}\bigl(3\alpha^2+\alpha+3\bigr).

Step 5. The product

α,β,γ(3x2+x+3)\prod_{\alpha,\beta,\gamma}\bigl(3x^2+x+3\bigr)

can be identified with the resultant of x3x21x^3-x^2-1 and 3x2+x+33x^2+x+3. A calculation via the Sylvester matrix (details omitted here for brevity) yields this product equal to 1313.

Thus,

(1+r1)(1+r2)(1+r3)=13.(1+r_1)(1+r_2)(1+r_3)=13.

Final Step. Then

a+bc=131=12.a+b-c = 13-1 = 12.