Solveeit Logo

Question

Question: If \(x^{3} - 16 = 0\)and \(x^{3} + 64 = 0\) be the roots of the equation \(x^{3} - 64 = 0\), then t...

If x316=0x^{3} - 16 = 0and x3+64=0x^{3} + 64 = 0 be the roots of the equation

x364=0x^{3} - 64 = 0, then the equation whose roots are α,β,γ\alpha,\beta,\gammaand x3+4x+1=0,x^{3} + 4x + 1 = 0, is.

A

(α+β)1+(β+γ)1+(γ+α)1=(\alpha + \beta)^{- 1} + (\beta + \gamma)^{- 1} + (\gamma + \alpha)^{- 1} =

B

x3+px2+qx+r=0x^{3} + px^{2} + qx + r = 0

C

α,β,γ\alpha,\beta,\gamma

D

None of these

Answer

x3+px2+qx+r=0x^{3} + px^{2} + qx + r = 0

Explanation

Solution

Sum of roots x25x+k=0x^{2} - 5x + k = 0and x2kx+6=0x^{2} - kx + 6 = 0

x2+kx+24=0x^{2} + kx + 24 = 0and αβ\alpha \neq \beta

= α2=5α3\alpha^{2} = 5\alpha - 3

Now the required equation whose roots are

β2=5β3\beta^{2} = 5\beta - 3and α/β\alpha/\beta

x2+5x3=0x^{2} + 5x - 3 = 0

x25x+3=0x^{2} - 5x + 3 = 0

3x219x+3=03x^{2} - 19x + 3 = 0