Solveeit Logo

Question

Question: If $x=2\sin\theta - \sin2\theta$ and $y=2\cos\theta - \cos2\theta, \theta \in [0,2\pi]$, then $\frac...

If x=2sinθsin2θx=2\sin\theta - \sin2\theta and y=2cosθcos2θ,θ[0,2π]y=2\cos\theta - \cos2\theta, \theta \in [0,2\pi], then d2ydx2\frac{d^2y}{dx^2} at θ=π\theta = \pi is:

Answer

38\frac{3}{8}

Explanation

Solution

  1. Calculate dxdθ=2cosθ2cos2θ\frac{dx}{d\theta} = 2\cos\theta - 2\cos2\theta and dydθ=2sin2θ2sinθ\frac{dy}{d\theta} = 2\sin2\theta - 2\sin\theta.

  2. Evaluate at θ=π\theta = \pi: dxdθθ=π=2(1)2(1)=4\frac{dx}{d\theta}\bigg|_{\theta=\pi} = 2(-1) - 2(1) = -4 dydθθ=π=2(0)2(0)=0\frac{dy}{d\theta}\bigg|_{\theta=\pi} = 2(0) - 2(0) = 0

  3. Find dydx=dy/dθdx/dθ=2sin2θ2sinθ2cosθ2cos2θ=sin2θsinθcosθcos2θ\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{2\sin2\theta - 2\sin\theta}{2\cos\theta - 2\cos2\theta} = \frac{\sin2\theta - \sin\theta}{\cos\theta - \cos2\theta}. Using sum-to-product identities, this simplifies to cot(3θ2)\cot\left(\frac{3\theta}{2}\right).

  4. Differentiate dydx\frac{dy}{dx} with respect to θ\theta: ddθ(dydx)=ddθ(cot(3θ2))=csc2(3θ2)32\frac{d}{d\theta}\left(\frac{dy}{dx}\right) = \frac{d}{d\theta}\left(\cot\left(\frac{3\theta}{2}\right)\right) = -\csc^2\left(\frac{3\theta}{2}\right) \cdot \frac{3}{2}.

  5. Evaluate this derivative at θ=π\theta = \pi: ddθ(dydx)θ=π=csc2(3π2)32=(1)232=32\frac{d}{d\theta}\left(\frac{dy}{dx}\right)\bigg|_{\theta=\pi} = -\csc^2\left(\frac{3\pi}{2}\right) \cdot \frac{3}{2} = -(-1)^2 \cdot \frac{3}{2} = -\frac{3}{2}.

  6. Calculate d2ydx2=ddθ(dydx)dxdθθ=π=3/24=38\frac{d^2y}{dx^2} = \frac{\frac{d}{d\theta}\left(\frac{dy}{dx}\right)}{\frac{dx}{d\theta}}\bigg|_{\theta=\pi} = \frac{-3/2}{-4} = \frac{3}{8}.