Question
Question: If $x=2\sin\theta - \sin2\theta$ and $y=2\cos\theta - \cos2\theta, \theta \in [0,2\pi]$, then $\frac...
If x=2sinθ−sin2θ and y=2cosθ−cos2θ,θ∈[0,2π], then dx2d2y at θ=π is:

Answer
83
Explanation
Solution
-
Calculate dθdx=2cosθ−2cos2θ and dθdy=2sin2θ−2sinθ.
-
Evaluate at θ=π: dθdxθ=π=2(−1)−2(1)=−4 dθdyθ=π=2(0)−2(0)=0
-
Find dxdy=dx/dθdy/dθ=2cosθ−2cos2θ2sin2θ−2sinθ=cosθ−cos2θsin2θ−sinθ. Using sum-to-product identities, this simplifies to cot(23θ).
-
Differentiate dxdy with respect to θ: dθd(dxdy)=dθd(cot(23θ))=−csc2(23θ)⋅23.
-
Evaluate this derivative at θ=π: dθd(dxdy)θ=π=−csc2(23π)⋅23=−(−1)2⋅23=−23.
-
Calculate dx2d2y=dθdxdθd(dxdy)θ=π=−4−3/2=83.
