Solveeit Logo

Question

Question: If x2 + 6x – 27 \> 0, –x2 + 3x + 4 \> 0, then x lies in the interval...

If x2 + 6x – 27 > 0, –x2 + 3x + 4 > 0, then x lies in the interval

A

(3, 4)

B

[3, 4]

C

(–∞, 3] ∪ [4, ∞)

D

(−9, 4)

Answer

(3, 4)

Explanation

Solution

x2 + 6x – 27 > 0

⇒ x2 + 9x – 3x – 27 > 0

x(x + 9) –3(x + 9) > 0

⇒ (x – 3) (x + 9) > 0

x > 3 & x < – 9 ....(1)

–x2 + 3x + 4 > 0

⇒ x2 – 3x – 4 < 0

x2 – 4x + x – 4 < 0

⇒ x(x – 4) +1 (x – 4) < 0

(x – 4) (x + 1) < 0 ⇒ –1 < x < 4 ....(2)

from (1) and (2) (3, 4)